RESUMEN
Small quinone molecules are promising cathode materials for aqueous zinc batteries. However, they experience fast capacity decay due to dissolution in electrolytes. Herein, we introduce a simple methyl group to a naphthoquinone (NQ) cathode and demonstrate a facile self-saturation strategy. The methyl group exhibits hydrophobic properties together with light weight and a weak electron-donation effect, which allows a good balance among cycling stability, capacity and voltage for cathode materials. The resulting menadione (Me-NQ) presents around one-third solubility of NQ. The former thus rapidly reaches saturation in the electrolyte during cycling, which suppresses subsequent dissolution. Thanks to this process, the Me-NQ cathode preserves 146 mA h g-1 capacity after 3500 cycles at 5 A g-1, far exceeding 88 mA h g-1 for NQ. Me-NQ also delivers a stabilized capacity of 316 mA h g-1 at 0.1 A g-1 with only 0.05 V lower average redox voltage than NQ. The co-storage of Zn2+ and H+ with the redox reactions on the carbonyl sites of Me-NQ is revealed.
RESUMEN
High-voltage initial anode-free lithium metal batteries (AFLMBs) promise the maximized energy densities of rechargeable lithium batteries. However, the reversibility of the high-voltage cathode and lithium metal anode is unsatisfactory in sustaining their long lifespan. In this research, a concentrated electrolyte comprising dual salts of LiTFSI and LiDFOB dissolved in mixing solvents of dimethyl carbonate (DMC) and fluoroethylene carbonate (FEC) with a LiNO3 additive was formulated to address this challenge. FEC and LiNO3 regulate the anion-rich solvation structure and help form a LiF, Li3N-rich solid electrolyte interphase (SEI) with a high lithium plating/stripping Coulombic efficiency of 98.3%. LiDFOB preferentially decomposes to effectively suppress the side reaction at the high-voltage operation of the Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode. Moreover, the large irreversible capacity during the initial charge/discharge cycle of the cathode provides supplementary lithium sources for cycle life extension. Owing to these merits, the as-fabricated AFLMBs can operate stably for 80 cycles even at an ultrahigh voltage of 4.6 V. This study sheds new insights on the formulation of advanced electrolytes for highly reversible high-voltage cathodes and lithium metal anodes and could facilitate the practical application of AFLMBs.
RESUMEN
Zn metal anodes experience dendritic growth and hydrogen evolution reactions (HER) in aqueous batteries. Herein, we propose an interface regulation strategy with a trace (1.4 × 10-4 mol kg-1) all-in-one epicatechin (EC) electrolyte additive to solve the above issues and reveal the roles of individual functional groups. By the disassembly of EC into simple molecules combined with entire molecule investigations, we show that phenol and ether sites preferentially anchor on the Zn surface, while the hydroxyl group pointing outward enters Zn2+ solvation shells at the interface. It modifies the following desolvation path, which not only enables uniform deposition with the thermodynamically favored plate morphology but also inhibits HER. With these synergistic effects of trace EC additive, the lifespan of symmetric cells extends to 8.5 times that of the baseline ZnSO4 electrolyte. The capacity retention of Zn//MnO2 full batteries with N/P = 3 also increases from 59.1 to 85.6% after 500 cycles.
RESUMEN
Plastic and reconstructive surgeons frequently utilize random skin flap transplantation to repair skin defects. However, the procedure carries a substantial risk of necrosis. Previous research has suggested that Biliverdin (Bv), the main component of Calculus Bovis, possessed potent anti-ischemic properties, making it a potential therapeutic agent for skin flap survival. Hence, in this study, the potential of Bv in promoting flap survival has been comprehensively investigated. Network pharmacology analysis revealed that the pharmacological effects of Bv on ischemic diseases may be attributed to its modulation of various signaling molecules, including the PI3K-Akt pathway. In vitro results demonstrated that Bv treatment significantly promoted angiogenesis in human umbilical vein endothelial cells (HUVEC), even in the presence of H2O2. This was evident by the increased cell proliferation, enhanced migration, and improved tube formation. Bv also effectively attenuated the intracellular generation of reactive oxygen species (ROS) induced by H2O2, which was achieved by suppressing mitochondrial ROS production through the PI3K/Akt-mediated activation of Nrf2/HO-1 signaling pathway. Consequently, Bv treatment led to a significant reduction in apoptosis and an increase in cell viability of HUVEC. Furthermore, in vivo experiment demonstrated that Bv treatment vastly elevated flap survival through enhancing angiogenesis while decreasing oxidative stress and apoptosis, which was comparable to the results of positive control of N-acetylcysteine (Nac). In conclusion, this study not only established a solid foundation for future study on therapeutic potential of Bv, but also proposed a promising treatment approach for enhancing the success rate of flap transplants and other ischemic-related tissue repair.
RESUMEN
Empathy is predominantly assessed with self-report questionnaires. However, their structural validities were not well-supported. This study aimed to re-explore and refine the factor structure of the Chinese version of the Questionnaire of Cognitive and Affective Empathy (QCAE) and investigate the pathways linked between dimensions of empathy and schizotypy. Data from a valid sample of 1,360 community-dwelling adults (aged 18-35) were subjected to the exploratory graph analysis (EGA) and bootstrap EGA for factor retention. A goodness-of-fit evaluation was conducted using confirmatory factor analysis (CFA). Lastly, a Gaussian graphical model with sum scores of the resultant empathy dimensions, positive, negative, and disorganized schizotypy, and paranoia as nodes was estimated. Results supported a three-factor structure for the revised 20-item QCAE, demonstrating a good model fit. The new Online simulation subscale was associated with reduced disorganized schizotypy, whereas the new Perspective-taking subscale was associated with decreased disorganized schizotypy and increased positive schizotypy. The composite Affective empathy subscale was associated with decreased negative schizotypy and increased positive and disorganized schizotypy and paranoia. Overall, the revised QCAE demonstrated good structural validity, measuring three separable and internally cohesive factors of empathy. Each factor possessed unique and differential relationships with schizotypy dimensions that merit research and clinical attention.
RESUMEN
There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn-Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn-NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224â mAh g-1 at 1â A g-1 and remarkable cycling stability over 320,000â cycles. The electron hopping along the Mn-N-Zn bridge is stimulated via a spin exchange mechanism. This process broadens the Mn 3dxy band width and enhances the metallic character of the catalyst, thus facilitating charge transfer between the catalysts and reaction intermediates. Additionally, the increased electron occupancy within the d-orbital of Zn elevates Zn's d-band center, thereby enhancing chemical interactions between MnZn-NC and I-based species. Furthermore, our mechanism demonstrates potential applicability to other Metal-Zn-NC DACs with spin-polarized atoms. Our work elucidates a clear mechanistic understanding of diatomic catalysts and provides new insights into catalyst design for AZIBs.
RESUMEN
Accurate and prompt determination of fire types is essential for effective firefighting and reducing damage. However, traditional methods such as smoke detection, visual analysis, and wireless signals are not able to identify fire types. This paper introduces FireSonic, an acoustic sensing system that leverages commercial speakers and microphones to actively probe the fire using acoustic signals, effectively identifying fire types. By incorporating beamforming technology, FireSonic first enhances signal clarity and reliability, thus mitigating signal attenuation and distortion. To establish a reliable correlation between fire type and sound propagation, FireSonic quantifies the heat release rate (HRR) of flames by analyzing the relationship between fire-heated areas and sound wave propagation delays. Furthermore, the system extracts spatiotemporal features related to fire from channel measurements. The experimental results demonstrate that FireSonic attains an average fire type classification accuracy of 95.5% and a detection latency of less than 400 ms, satisfying the requirements for real-time monitoring. This system significantly enhances the formulation of targeted firefighting strategies, boosting fire response effectiveness and public safety.
RESUMEN
The fungus Talaromyces hainanensis, isolated from the mangrove soil, was characterized as a novel species by morphology observation and phylogenetic analyses. Four new γ-lactam alkaloids talaroilactams A-D (1-4) and two reported compounds harzianic acid (5) and isoharzianic acid (6) were identified from the fungus T. hainanensis WHUF0341, assisted by OSMAC along with molecular networking approaches. Their structures were determined through ECD calculations and spectroscopic analyses. Moreover, the biosynthetic route of 1-4 was also proposed. Compound 1 displayed potent cytotoxicity against HepG2 cell lines, with an IC50 value of 10.75 ± 1.11 µM. In addition, network pharmacology was employed to dissect the probable mechanisms contributing to the antihepatocellular carcinoma effects of compound 1, revealing that cytotoxicity was mainly associated with proteolysis, negative regulation of autophagy, inflammatory response, and the renin-angiotensin system. These results not only expanded the chemical space of natural products from the mangrove associated fungi but also afforded promising lead compounds for developing the antihepatocellular carcinoma agents.
Asunto(s)
Alcaloides , Antineoplásicos , Lactamas , Talaromyces , Talaromyces/química , Talaromyces/metabolismo , Humanos , Alcaloides/farmacología , Alcaloides/química , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Lactamas/química , Lactamas/farmacología , Filogenia , Estructura Molecular , Humedales , Rhizophoraceae/microbiología , Rhizophoraceae/químicaRESUMEN
PURPOSE: Patients with advanced renal cell carcinoma (RCC) face significant challenges, stemming both from the complexities of the disease itself and the adverse effects of treatments. This study evaluated the feasibility and acceptability of a mobile health (mHealth) application tailored for education and symptom management of patients with advanced RCC receiving combined immune checkpoint inhibitor and tyrosine kinase inhibitor (ICI-TKI) therapy. METHODS: The primary end points were acceptability and feasibility. Acceptability was defined as the proportion of patients approached who consented to participate, setting a benchmark of at least 50% for this metric. Feasibility was gauged by the completion rate of the intervention among the participants; it required at least 50% of participants to fully complete the intervention and at least 70% to finish half of the administered questionnaires. The secondary end points included knowledge assessment and patient-reported outcomes (PROs). PROs were evaluated using validated instruments. To discern the changes between pre- and post-educational module quiz scores, we used the Wilcoxon signed-rank test. Time-course data of PROs were visualized using line plots and then compared using paired t-tests. RESULTS: From November 2022 to July 2023, 20 of 22 (90%) patients approached for the study consented and enrolled. Of the enrolled patients, 60% completed all questionnaires and knowledge assessments at every time point and 75% completed at least half of the surveys and questionnaires. Significant pre/post differences were noted in two of six quizzes in the knowledge assessment. This study population did not experience a significant change in PRO scores after starting therapy. CONCLUSION: The mHealth application designed for education and symptom management in patients with advanced RCC undergoing combination ICI-TKI has proven to be both acceptable and feasible, meeting previous research benchmarks.
Asunto(s)
Carcinoma de Células Renales , Estudios de Factibilidad , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales , Aplicaciones Móviles , Inhibidores de Proteínas Quinasas , Teléfono Inteligente , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Femenino , Masculino , Neoplasias Renales/tratamiento farmacológico , Persona de Mediana Edad , Anciano , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Educación del Paciente como Asunto/métodos , Telemedicina , Adulto , Medición de Resultados Informados por el Paciente , Encuestas y CuestionariosRESUMEN
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Metales , Inmunidad Innata , Inmunidad AdaptativaRESUMEN
Ion-adsorbed rare earth minerals are rich in medium and heavy rare earth (RE), which are important strategic resources. In this article, a novel approach for the extraction of RE from ion adsorbed minerals was developed. Through a comprehensive assessment of their extraction and separation performance, the hydrophobic deep eutectic solvents (HDES) with a composition of trioctylphosphine oxide (TOPO): dodecanol (LA): 2-thiophenoyltrifluoroacetone (HTTA) = 1:1:1 was determined as the optimal configuration. Under optimized conditions, only RE were extracted by the HDES, while Al, Ca, Mg were not extracted at all. The HDES based extraction obviated the need for diluent such as kerosene, eliminating the generation of impurity removal residues. The RE in the stripping solution could be successfully enriched by saponified lauric acid, achieving an impressive precipitation rate of 99.7%. The RE precipitate underwent further enrichment, resulting in a RE concentration of 176 g/L (REO = 210 g/L). Unlike industrial precipitants such as oxalic acid and ammonium bicarbonate, lauric acid can be effectively recycled, thereby avoiding a large amount of wastewater and carbon dioxide emissions. The obtained RE solution product exhibits high yield and purity, this study provides an eco-friendly and high-yield approach for extracting RE.
RESUMEN
Viscosity and sulfur dioxide derivatives were significant indicators for the assessment of health threat and even cancers, therefore, on-site and real time detection of viscosity and sulfur dioxide derivatives has obtained considerable attentions. An FRET-based fluorescence probe JZX was designed and synthesized based on a novel energy donor of N,N-diethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzamide fluorophore. JZX exhibited a large Stokes shift (230 nm), high energy transfer efficiency, wide emission channel gap (135 nm) and excellent stability and biocompatibility. JZX detected sulfur dioxide with low detection limit (55 nM), fast responding (16 min), high selectivity and sensitivity. Additionally, JZX tend to target endoplasmic reticulum of which normal metabolism will be disturbed by the abnormal levels of viscosity and sulfur dioxide derivatives. Prominently, JZX could concurrently detect viscosity and sulfur dioxide derivatives depending on different fluorescence signals in living cells for the screening of cancer cells. Hence, probe JZX will be a promising candidate for the detection of viscosity and sulfur dioxide derivatives, and even for the diagnosis of liver cancers.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Sulfitos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Viscosidad , Sulfitos/análisis , Estructura Molecular , Dióxido de Azufre/análisis , Imagen Óptica , Células HeLaRESUMEN
Oxytocin is a neuropeptide thought to play a central role in regulating social and emotional behavior. Current techniques for neuropeptide imaging are generally limited in spatial and temporal resolution, real-time imaging capacity, selectivity for oxytocin over vasopressin, and application in young and non-model organisms. To avoid the use of endogenous oxytocin receptors for oxytocin probe development, we employed a protocol to evolve purely synthetic molecular recognition on the surface of near-infrared fluorescent single-walled carbon nanotubes (SWCNT) using single-stranded DNA (ssDNA). This probe reversibly undergoes up to a 172% fluorescence increase in response to oxytocin with a K d of 4.93 µM. Furthermore, this probe responds selectively to oxytocin over oxytocin analogs, receptor agonists and antagonists, and most other neurochemicals. Lastly, we show our probe can image synaptic evoked oxytocin release in live mouse brain slices. Optical probes with the specificity and resolution requisite to image endogenous oxytocin signaling can advance the study of oxytocin neurotransmission for its role in both health and disease.
RESUMEN
The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.
Asunto(s)
Nanopartículas , Neoplasias , Vacunas , Animales , Ratones , Neoplasias/terapia , Adyuvantes Inmunológicos , Inmunoterapia/métodos , Nanopartículas/químicaRESUMEN
Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults with a 5-year survival rate of 30.5%. These poor patient outcomes are attributed to tumor relapse, stemming from ineffective innate immune activation, T cell tolerance, and a lack of immunological memory. Thus, new strategies are needed to activate innate and effector immune cells and evoke long-term immunity against AML. One approach to address these issues is through Stimulator of Interferon Genes (STING) pathway activation, which produces Type I Interferons (Type I IFN) critical for innate and adaptive immune activation. Here, we report that systemic immunotherapy with a lipid-based nanoparticle platform (CMP) carrying Mn2+ and STING agonist c-di-AMP (CDA) exhibited robust anti-tumor efficacy in a mouse model of disseminated AML. Moreover, CMP immunotherapy combined with immune checkpoint blockade against cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) elicited robust innate and adaptive immune activation with enhanced cytotoxic potential against AML, leading to extended animal survival after re-challenge with AML. Overall, this CMP combination immunotherapy may be a promising approach against AML and other disseminated cancer.
Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas , Neoplasias , Ratones , Adulto , Animales , Humanos , Manganeso , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfocitos T , Inmunoterapia , Inmunidad InnataRESUMEN
MnO2 is a desired cathode candidate for aqueous zinc batteries. However, their cycling stability is seriously limited by active material dissolution, and pre-addition of Mn2+ salts in electrolytes is widely required to shift the dissolution equilibrium. Herein, we synthesize a polydopamine (PDA) coated MnO2 composite material (MnO2/PDA) to realize stable cycling in zinc cells without relying on pre-added Mn2+. The functional groups on PDA exhibit strong coordination ability with the Mn active material. It not only confines dissolved species within the cathode during discharge, but also enhances their deposition back to the cathode during charge to retrieve the active material. Thanks to this effect, the cathode achieves 81.1% capacity retention after 2000 cycles at 1 A g-1 in the 1 M ZnSO4 electrolyte, superior to 37.3% with the regular MnO2 cathode. This work presents an effective strategy to realize the stable cycling of manganese oxide cathode materials in aqueous zinc batteries.
RESUMEN
It is important to develop materials with environmental stability and long device shelf life for use in organic field-effect transistors (OFETs). The microscopic, molecular-level nature of the organic layer in OFETs is not yet well understood. The stability of geometric and electronic structures and the regulation of the external electric field (EEF) on the charge transport properties of four typical homogeneous organic semiconductors (OSCs) were investigated by density functional theory (DFT). The results showed that under the EEF, the structural changes in single-bond linked oligomers were more sensitive and complex than those of condensed molecules, and there were non-monotonic changes in their reorganization energy (λ) during charge transport under an EEF consisting of decreases and then increases (Series D). The change in λ under an EEF can be preliminarily and qualitatively determined by the change in the frontier molecular orbitals (FMOs) - the number of C-atoms with nonbonding characteristics. For single-bonded molecules, the transfer integral is basically unchanged under a low EEF, but it will greatly change at a high EEF. Because the structure and properties of the molecule will greatly change under different EEFs, the effect of an EEF should be fully considered when determining the intrinsic mobility of OSCs, which could cause a deviation 0.3-20 times in mobility. According to detailed calculations, one heterogeneous oligomer, TH-BTz, was designed. Its λ can be greatly reduced under an EEF, and the change in the energy level of FMOs can be adjusted to different degrees. This study provides a reasonable idea for verification of the experimental mobility value and also provides guidance for the directional design of stable high-mobility OSCs.
RESUMEN
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
RESUMEN
Liquiritin (LIQ) is a flavonoid known for its cardioprotective properties, extracted from Glycyrrhiza uralensis Fisch. The purpose of the present study was to investigate the protective mechanism of LIQ against hypoxia/reoxygenation (H/R) injury through in vitro experiments, with the goal of enhancing its pharmacological effects. Initially, network pharmacology was employed to explore the targets and mechanisms of LIQ. Subsequently, an in vitro H/R model was established using H9c2 cells. Potential targets for LIQ and myocardial ischemia-reperfusion injury (MIRI) were identified through online databases. The STRING, Cytoscape and DAVID databases were used to extract intersecting targets and mechanisms. In vitro experiments were conducted to validate these findings, assessing cardiac enzymes, oxidative stress indicators, mitochondrial fluorescence, apoptotic fluorescence, inflammation and related protein expression. The network pharmacological analysis revealed that the protective effects of LIQ on MIRI involve oxidative stress, inflammation and apoptosis. The results of in vitro experimental validation demonstrated that LIQ significantly reduced the activities of lactated dehydrogenase and creatine kinase isoenzyme-MB (P<0.05 or 0.01), as well as the level of malondialdehyde (P<0.01). It also inhibited the production of reactive oxygen species (P<0.01), the release of inflammatory factors (P<0.05 or 0.01) and apoptosis (P<0.01). By contrast, the LIQ pre-treatment group exhibited a significant increase in mitochondrial membrane potential level (P<0.05 or 0.01) and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase (P<0.05 or 0.01). Furthermore, LIQ reduced the protein expressions of TNF-α receptor type 1 (TNFR1) and MMP9, along with the level of NF-κB phosphorylation (P<0.05 or 0.01). In conclusion, LIQ mitigated H/R-induced cardiomyocyte injury through mechanisms that may involve antioxidants, anti-apoptotic effects, protection against mitochondrial damage and suppression of inflammatory levels. These effects are achieved via inhibition of the TNFR1/NF-κB/MMP9 pathway.
RESUMEN
Background: Cholestasis is a common pathological manifestation dominated by accumulation of potentially toxic biliary compounds. Na+-taurocholate cotransporting polypeptide (NTCP) plays a critical role in protection from cholestasis and can be targeted therapeutically. Chishao (Paeoniae Radix Rubra) is a clinically efficacious agent for treating cholestasis, but the underlying mechanism has not been fully clarified. Objective: To evaluate the effects of Chishao on the expression of NTCP in rats with alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. Methods: Chishao extracts were obtained by water decoction. Cholestasis model induced by ANIT in rats were established. Thirty rats were divided into five groups: control group (C), ANIT model group (M), 10 g/kg Chishao group (LD), 20 g/kg Chishao group (MD) and 40 g/kg Chishao group (HD). The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), direct bilirubin (DB), alkaline phosphatase (ALP) and total bile acid (TBA) were detected. The mRNA and protein expression of NTCP, multidrug resistance associated protein 2 (MRP2) and bile salt export pump (BSEP) were detected by reverse transcription qPCR and Western blotting respectively. To assess the effects of Chishao on NTCP, MRP2 and BSEP localized at the membrane of hepatocytes, an in vitro experiment involving primary hepatocytes was conducted via the utilization of laser scanning confocal microscopy. Results: The extracts of Chishao significantly improved serum ALT, AST, ALP, TB, DB and TBA (p < 0.05), especially ALP in the HD group (p < 0.01). The histological pathological findings were also reversed in LD, MD and HD groups. The mRNA level of MRP2 was significantly downregulated after treatment with ANIT, whereas it was reversed in MD and HD groups (p < 0.05). The mRNA expression of NTCP was significantly downregulated after ANIT treatment, but dramatically upregulated in the HD group. The expressions of BSEP and MRP2 were similar, but that of NTCP decreased after ANIT treatment, which was reversed significantly by Chishao extracts in a dose-dependent manner. The expression of NTCP in hepatocytes from rats increased dose-dependently after Chishao treatment in vitro. Conclusion: Chishao extracts can improve the serum and histological performances of intra-hepatic cholestasis caused by ANIT, probably by working on transport proteins in liver cell membranes.