Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Sci Total Environ ; : 175297, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127209

RESUMEN

Excessive utilization of chemical fertilizers in mango orchards not only hampers the attainment of sustainable harvests but also poses significant ecological detriments. This investigation proposes a promising solution by advocating the judicious replacement of chemical fertilizers with organic fertilizer (OF) and slow-release fertilizer (SRF), with potential to bolster soil health and augment crop productivity. In light of the promise held by these alternatives, it is imperative to establish detailed fertilization protocols for enhanced sustainable practices in mango farming. This two-year field study employed a comprehensive suite of seven fertilization strategies, unveiling that a 25 % chemical fertilizers substitution with OF and SRF improved mango yields by 12.5 % and 11.3 %, respectively, over standard practices. Additionally, these approaches substantially augmented the nutritional quality of mangoes, evident from Vitamin C enhancements of 53.9 % to 56.9 %, and improvements in sugar-to-acid ratio (19.2 %-30.3 %) and solid-to-acid ratio (12.1 %-25.3 %). Notably, the application of OF and SRF led to increased leaf nitrogen and phosphorus concentrations, while simultaneously reducing soil phosphorus and potassium levels. Furthermore, these fertilizers fostered the growth of beneficial soil microorganisms, namely Actinobacteria and Proteobacteria, and strengthened the synergy within the soil bacterial community, hence optimizing bacterial competition and nutrient cycling. The study proposes that the adoption of OF or SRF can effectively regulate soil nutrient balance, promote resilient and functional soil bacterial ecosystems, and ultimately improve mango yield and fruit quality. It recommends a fertilization scheme incorporating 25 % organic or slow-release nitrogen to align with ecological sustainability goals, promoting a more vigorous and resilient soil and crop system.

2.
J Comput Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109562

RESUMEN

Small molecules (SMs) play a pivotal role in regulating microRNAs (miRNAs). Existing prediction methods for associations between SM-miRNA have overlooked crucial aspects: the incorporation of local topological features between nodes, which represent either SMs or miRNAs, and the effective fusion of node features with topological features. This study introduces a novel approach, termed high-order topological features for SM-miRNA association prediction (HTFSMMA), which specifically addresses these limitations. Initially, an association graph is formed by integrating SM-miRNA association data, SM similarity, and miRNA similarity. Subsequently, we focus on the local information of links and propose target neighborhood graph convolutional network for extracting local topological features. Then, HTFSMMA employs graph attention networks to amalgamate these local features, thereby establishing a platform for the acquisition of high-order features through random walks. Finally, the extracted features are integrated into the multilayer perceptron to derive the association prediction scores. To demonstrate the performance of HTFSMMA, we conducted comprehensive evaluations including five-fold cross-validation, leave-one-out cross-validation (LOOCV), SM-fixed local LOOCV, and miRNA-fixed local LOOCV. The area under receiver operating characteristic curve values were 0.9958 ± 0.0024 (0.8722 ± 0.0021), 0.9986 (0.9504), 0.9974 (0.9111), and 0.9977 (0.9074), respectively. Our findings demonstrate the superior performance of HTFSMMA over existing approaches. In addition, three case studies and the DeLong test have confirmed the effectiveness of the proposed method. These results collectively underscore the significance of HTFSMMA in facilitating the inference of associations between SMs and miRNAs.

3.
Sci Total Environ ; 949: 175205, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097023

RESUMEN

Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.

4.
Biomed Res Int ; 2024: 8182887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140001

RESUMEN

Despite the potential of neutralizing antibodies in the management of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), clinical research on its efficacy in Chinese patients remains limited. This study is aimed at investigating the therapeutic effect of combination of antiviral therapy with neutralizing monoclonal antibodies for recurrent persistent SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion. A prospective study was conducted on Chinese patients who were treated with antiviral nirmatrelvir/ritonavir therapy and the neutralizing antibody tixagevimab-cilgavimab (tix-cil). The primary outcome was the rate of recurrent SARS-CoV-2 infection. Five patients with lymphoma experienced recurrent SARS-CoV-2 pneumonia and received tix-cil treatment. All patients had a history of CD20 monoclonal antibody use within the year preceding SARS-CoV-2 infection, and two patients also had a history of Bruton's tyrosine kinase (BTK) inhibitor use. These patients had notably low lymphocyte counts and exhibited near depletion of B cells. All five patients tested negative for serum SARS-CoV-2 IgG and IgM antibodies. None of the patients developed reinfection with SARS-CoV-2 pneumonia after antiviral and tix-cil treatment during the 6-month follow-up period. In conclusion, the administration of antiviral and SARS-CoV-2-neutralizing antibodies showed encouraging therapeutic efficacy against SARS-CoV-2 pneumonia in patients with lymphoma complicated by B cell depletion, along with the potential preventive effect of neutralizing antibodies for up to 6 months.


Asunto(s)
Anticuerpos Neutralizantes , Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Linfoma , Ritonavir , SARS-CoV-2 , Humanos , Masculino , Anticuerpos Neutralizantes/uso terapéutico , Persona de Mediana Edad , Femenino , Antivirales/uso terapéutico , SARS-CoV-2/inmunología , Linfoma/tratamiento farmacológico , Linfoma/complicaciones , COVID-19/inmunología , COVID-19/complicaciones , Ritonavir/uso terapéutico , Anciano , Estudios Prospectivos , Adulto , Anticuerpos Monoclonales Humanizados/uso terapéutico , Resultado del Tratamiento , Combinación de Medicamentos , Recurrencia , Lopinavir/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico
5.
J Thorac Dis ; 16(7): 4693-4701, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39144344

RESUMEN

This study aimed to design a standardised bronchoscopic holmium laser ablation continuous cryoablation for the treatment of airway stenosis caused by tissue hyperplasia after tracheal intubation and to retrospectively analyse its safety and feasibility. We collected the data of patients who had undergone bronchoscopic holmium laser ablation continuous cryoablation due to airway stenosis caused by tracheal mucosal tissue hyperplasia after tracheal intubation. The patients' baseline characteristics, ablation effects, surgical complications and other data were analysed. In total, 16 patients were enrolled in this study. On average, airway stenosis occurred 96.00 (interquartile range, 69.75-152.50) days after tracheal intubation and bronchoscopic holmium laser ablation continuous cryoablation took an average of 90.38 minutes (standard deviation: 16.78). After the first continuous cryoablation, 75.0% (12/16) of the patients had complete ablation of hyperplastic tissue, and 25.0% (4/16) had most of the hyperplastic tissue (>50%) removed. Altogether, 18.75% (3/16) and 6.25% (1/16) of the patients had complete ablation of hyperplastic tissue after the second and third cryoablation, respectively. Moreover, one patient (6.25%) had minimal wound bleeding postoperatively, and no other surgical complications occurred. No airway stenosis was found in all enrolled patients during follow-up 1 and 6 months after the last cryoablation. According to the above results of our small sample study indicated that bronchoscopic holmium laser ablation continuous cryoablation seems safe and effective for treating airway stenosis caused by tissue hyperplasia after tracheal intubation.

6.
Int J Biol Sci ; 20(9): 3372-3392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993570

RESUMEN

Oral squamous cell carcinoma (OSCC) is an aggressive cancer that poses a substantial threat to human life and quality of life globally. Lipid metabolism reprogramming significantly influences tumor development, affecting not only tumor cells but also tumor-associated macrophages (TAMs) infiltration. SOAT1, a critical enzyme in lipid metabolism, holds high prognostic value in various cancers. This study revealed that SOAT1 is highly expressed in OSCC tissues and positively correlated with M2 TAMs infiltration. Increased SOAT1 expression enhanced the capabilities of cell proliferation, tumor sphere formation, migration, and invasion in OSCC cells, upregulated the SREBP1-regulated adipogenic pathway, activated the PI3K/AKT/mTOR pathway and promoted M2-like polarization of TAMs, thereby contributing to OSCC growth both in vitro and in vivo. Additionally, we explored the upstream transcription factors that regulate SOAT1 and discovered that ETS1 positively regulates SOAT1 expression levels. Knockdown of ETS1 effectively inhibited the malignant phenotype of OSCC cells, whereas restoring SOAT1 expression significantly mitigated this suppression. Based on these findings, we suggest that SOAT1 is regulated by ETS1 and plays a pivotal role in the development of OSCC by facilitating lipid metabolism and M2-like polarization of TAMs. We propose that SOAT1 is a promising target for OSCC therapy with tremendous potential.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Proteína Proto-Oncogénica c-ets-1 , Macrófagos Asociados a Tumores , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Macrófagos Asociados a Tumores/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Línea Celular Tumoral , Animales , Ratones , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Masculino , Movimiento Celular
7.
PLoS Biol ; 22(7): e3002679, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38995985

RESUMEN

Over-generalized fear is a maladaptive response to harmless stimuli or situations characteristic of posttraumatic stress disorder (PTSD) and other anxiety disorders. The dorsal dentate gyrus (dDG) contains engram cells that play a crucial role in accurate memory retrieval. However, the coordination mechanism of neuronal subpopulations within the dDG network during fear generalization is not well understood. Here, with the Tet-off system combined with immunostaining and two-photon calcium imaging, we report that dDG fear engram cells labeled in the conditioned context constitutes a significantly higher proportion of dDG neurons activated in a similar context where mice show generalized fear. The activation of these dDG fear engram cells encoding the conditioned context is both sufficient and necessary for inducing fear generalization in the similar context. Activities of mossy cells in the ventral dentate gyrus (vMCs) are significantly suppressed in mice showing fear generalization in a similar context, and activating the vMCs-dDG pathway suppresses generalized but not conditioned fear. Finally, modifying fear memory engrams in the dDG with "safety" signals effectively rescues fear generalization. These findings reveal that the competitive advantage of dDG engram cells underlies fear generalization, which can be rescued by activating the vMCs-dDG pathway or modifying fear memory engrams, and provide novel insights into the dDG network as the neuronal basis of fear generalization.


Asunto(s)
Giro Dentado , Miedo , Neuronas , Animales , Miedo/fisiología , Giro Dentado/fisiología , Ratones , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Condicionamiento Clásico/fisiología , Memoria/fisiología , Generalización Psicológica/fisiología
8.
Heliyon ; 10(12): e32835, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975064

RESUMEN

Objective: This study aimed to investigate the factors influencing weaning failure from invasive mechanical ventilation (IMV) in critically ill older patients with coronavirus disease 2019 (COVID-19). Methods: We enrolled critically ill older patients with COVID-19 who were admitted to the medical intensive care unit (ICU) and received IMV between December 2022 and June 2023. Results: We included 68 critically ill older patients with COVID-19 (52 male [76.5 %] and 16 female individuals [23.5 %]). The patients' median age (interquartile range) was 75.5 (70.3-82.8) years. The median length of ICU stay was 11.5 (7.0-17.8) days; 34 cases (50.0 %) were successfully weaned from IMV. The successfully weaned group had a higher proportion of underlying chronic obstructive pulmonary disease [6 (17.6 %) vs. 0, P = 0.033] and fewer cases of diabetes [7 (20.6 %) vs. 16 (47.1 %), P = 0.021] compared with the weaning failure group. Serum lactate levels [1.5 (1.2-2.3) vs. 2.6 (1.9-3.1) mmol/L, P < 0.001], blood urea nitrogen [8.2 (6.3-14.4) vs. 11.4 (8.0-21.3) mmol/L, P = 0.033], Acute Physiology and Chronic Health Evaluation (APACHE) II score [19.0 (12.0-23.3) vs. 22.5 (16.0-29.3), P = 0.014], and hospitalization days before endotracheal intubation [1.0 (0.0-5.0) vs. 3.0 (0.0-11.0), P = 0.023] were significantly decreased in the successfully weaned group, whereas PaO2/FiO2 [148.3 (94.6-200.3) vs. 101.1 (67.0-165.1), P = 0.038] and blood lymphocyte levels [0.6 (0.4-1.0) vs. 0.5 (0.2-0.6) 109/L, P = 0.048] were significantly increased, compared with the weaning failure group. Multivariate logistic regression analysis showed that diabetes (OR= 3.413, 95 %CI 1.029-11.326), P = 0.045), APACHE II Score (OR = 1.089, 95 % CI 1.008-1.175), P = 0.030), and hospitalization days before endotracheal intubation (OR = 1.137, 95 % CI 1.023-1.264), P = 0.017) were independent risk factors for weaning failure. Conclusion: In critically ill older patients with COVID-19 with diabetes, higher APACHE II Score, and longer hospitalization days before endotracheal intubation, weaning from IMV was more challenging. The study could help develop strategies for improving COVID-19 treatment.

9.
Am J Reprod Immunol ; 92(1): e13901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042523

RESUMEN

PROBLEM: Adenomyosis (AM) is associated with immune response and inflammation. However, the role of T cell subsets in AM development has not been thoroughly understood. METHOD OF STUDY: Patients with focal or diffuse AM were recruited. Serum cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). Different T cell subsets in the blood and ectopic endometrium were determined by flow cytometry. RESULTS: Serum interleukin-6 (IL-6) and macrophage-colony-stimulating factor (GM-CSF) were increased in patients with focal or diffuse AM before focused ultrasound ablation surgery (FUAS), but not after FUAS. Compared with the healthy control, the frequencies of CD8+ interferon-gamma (IFN-γ)-expressing cytotoxic T lymphocytes (CTLs), interleukin-17A (IL-17A)-expressing Tc17 cells, CD4+ T helper 1 (Th1) cells, and GM-CSF-expressing T helper (ThGM) cells were up-regulated in the blood of patients with AM, especially those with diffuse AM. However, these changes were eradicated after FUAS. Meanwhile, the frequencies of these T cell subsets were positively correlated with the CA-125 level. Furthermore, these T cell subsets were also increased in ectopic endometrium. CONCLUSIONS: Our study delineates for the first time the presence of CTLs, Tc17 cells, Th1, and ThGM cells in the blood and ectopic endometrium in AM. The results imply that T cell response might impact AM development.


Asunto(s)
Adenomiosis , Endometrio , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Células TH1 , Humanos , Femenino , Endometrio/inmunología , Endometrio/patología , Adulto , Adenomiosis/inmunología , Adenomiosis/sangre , Adenomiosis/patología , Células TH1/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Linfocitos T Citotóxicos/inmunología , Persona de Mediana Edad , Interleucina-17/metabolismo , Interleucina-17/sangre , Interleucina-6/sangre , Interleucina-6/metabolismo , Células Th17/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
10.
Front Oncol ; 14: 1398357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035737

RESUMEN

Introduction: Pneumocystis jirovecii pneumonia (PJP) is a life-threatening infection in immunocompromised individuals. Immune checkpoint inhibitor (ICI) has brought significant survival benefit in lung cancer patients. Although the few studies showed there was high mortality in PJP patients with ICI use, these studies had no comparative control groups. Methods: A retrospective study was conducted to compare the mortality in PJP patients with lung cancer between those treated with ICI and a concurrent control group treated without ICI. Results: A total number of 20 non-human immunodeficiency virus (HIV) patients with confirmed PJP and co-existing lung cancer were included in the current study, and classified into ICI group (n=9) and non-ICI group (n=11).There was a clear trend to a shorter onset of PJP in ICI group than non-ICI group (118.9 ± 60.9 vs 253.0 ± 185.1 days), although without statistical significance (p=0.053). Bronchoscopic alveolar lavage fluid were collected from all patients and used to identify Pneumocystis jirovecii. In both groups, metagenomics next-generation sequencing (mNGS) were the most used diagnostic techniques. Within 28 days after the onset of PJP, mortality was significantly higher in the ICI group than non-ICI group (33.3% vs 0, p=0.042). Conclusion: Lung cancer patients with ICI use had a higher mortality rate after PJP infection than patients without ICI use. Prospective studies with larger sample size and a multi-center design are warranted to further verify the present results.

11.
ACS Nano ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39038113

RESUMEN

Remodeling the endogenous regenerative microenvironment in wounds is crucial for achieving scarless, functional tissue regeneration, especially the functional recovery of skin appendages such as sweat glands in burn patients. However, current approaches mostly rely on the use of exogenous materials or chemicals to stimulate cell proliferation and migration, while the remodeling of a pro-regenerative microenvironment remains challenging. Herein, we developed a flexible sono-piezo patch (fSPP) that aims to create an endogenous regenerative microenvironment to promote the repair of sweat glands in burn wounds. This patch, composed of multifunctional fibers with embedded piezoelectric nanoparticles, utilized low-intensity pulsed ultrasound (LIPUS) to activate electrical stimulation of the target tissue, resulting in enhanced pro-regenerative behaviors of niche tissues and cells, including peripheral nerves, fibroblasts, and vasculatures. We further demonstrated the effective wound healing and regeneration of functional sweat glands in burn injuries solely through such physical stimulation. This noninvasive and drug-free therapeutic approach holds significant potential for the clinical treatment of burn injuries.

12.
Cancer Cell ; 42(7): 1239-1257.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38942025

RESUMEN

Global investigation of medulloblastoma has been hindered by the widespread inaccessibility of molecular subgroup testing and paucity of data. To bridge this gap, we established an international molecularly characterized database encompassing 934 medulloblastoma patients from thirteen centers across China and the United States. We demonstrate how image-based machine learning strategies have the potential to create an alternative pathway for non-invasive, presurgical, and low-cost molecular subgroup prediction in the clinical management of medulloblastoma. Our robust validation strategies-including cross-validation, external validation, and consecutive validation-demonstrate the model's efficacy as a generalizable molecular diagnosis classifier. The detailed analysis of MRI characteristics replenishes the understanding of medulloblastoma through a nuanced radiographic lens. Additionally, comparisons between East Asia and North America subsets highlight critical management implications. We made this comprehensive dataset, which includes MRI signatures, clinicopathological features, treatment variables, and survival data, publicly available to advance global medulloblastoma research.


Asunto(s)
Neoplasias Cerebelosas , Imagen por Resonancia Magnética , Meduloblastoma , Meduloblastoma/genética , Meduloblastoma/diagnóstico por imagen , Meduloblastoma/patología , Humanos , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/patología , Imagen por Resonancia Magnética/métodos , Niño , Femenino , Masculino , Adolescente , Inteligencia Artificial , Preescolar , China , Adulto Joven , Estados Unidos , Adulto , Pronóstico , Lactante , Aprendizaje Automático
13.
FEBS J ; 291(16): 3737-3748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865576

RESUMEN

Hemoglobins, with heme as a cofactor, are functional proteins that have extensive applications in the fields of artificial oxygen carriers and foods. Although Saccharomyces cerevisiae is an ideal host for hemoglobin synthesis, it lacks a suitable transport system to utilize additional heme for active expression of hemoglobins, resulting in the cellular aggregation and degradation of the latter. Here, an effective heme importer, heme-responsive gene 4 (Hrg-4), was selected from six candidates through the comparison of effects on the growth rates of Δhem1 S. cerevisiae strain and the activities of various hemoglobins when supplemented with 5 mg·L-1 exogenous heme. Additionally, to counter the instability of plasmid-based expression and the metabolic burden introduced from overexpressing Hrg-4, a series of hrg-4 integrated strains were constructed and the best engineered strain with five copies of hrg-4 was chosen. We found that this engineered strain was associated with an increased binding rate of heme in monomeric leghemoglobin and multimeric human hemoglobin (76.3% and 16.5%, respectively), as well as an enhanced expression of both hemoglobins (52.8% and 17.0%, respectively). Thus, the engineered strain with improved heme uptake can be used to efficiently synthesize other heme-binding proteins and enzymes in S. cerevisiae.


Asunto(s)
Hemo , Hemoglobinas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Hemo/metabolismo , Hemo/biosíntesis , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Leghemoglobina/metabolismo , Leghemoglobina/genética , Transporte Biológico
14.
Artículo en Inglés | MEDLINE | ID: mdl-38904417

RESUMEN

Schizophrenia (SCZ) is a complex psychiatric disorder that involves an inflammatory response thought to be characterized by microglial activation. The inflammasome complex may play critical roles in the pathomechanism of neuroinflammation but how this relates to SCZ remains unclear. In this study, we performed an immunohistochemical (IHC) analysis to compare the expression of inflammasome proteins in brain tissue from donors with SCZ (n = 16) and non-psychiatric donors (NP; n = 13) isolated from the superior frontal cortex (SFC), superior temporal cortex, and anterior cingulate cortex brain regions. To assess changes in the cell populations that express key inflammasome proteins, we performed IHC analyses of apoptosis-associated speck-like protein containing a CARD (ASC), nod-like receptor protein 3 (NLRP3), and interleukin (IL)-18 to determine if these proteins are expressed in microglia, astrocytes, oligodendrocytes, or neurons. Inflammasome proteins were expressed mainly in microglia from SCZ and NP brains. Increased numbers of microglia were present in the SFC of SCZ brains and exhibited higher inflammasome protein expression of ASC, NLRP3, and IL-18 compared to NPs. These findings suggest that increased inflammasome signaling may contribute to the pathology underlying SCZ.

15.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891528

RESUMEN

The construction of lunar bases represents a fundamental challenge for deep space exploration, lunar research, and the exploitation of lunar resources. In-situ resource utilization (ISRU) technology constitutes a pivotal tool for constructing lunar bases. Using lunar regolith to create geopolymers as construction materials offers multiple advantages as an ISRU technique. This paper discusses the principle of geopolymer for lunar regolith, focusing on the reaction principle of geopolymer. It also analyzes the applicability of geopolymer under the effects of the lunar surface environment and the differences between the highland and mare lunar regolith. This paper summarizes the characteristics of existing lunar regolith simulants and the research on the mechanical properties of lunar regolith geopolymers using lunar regolith simulants. Highland lunar regolith samples contain approximately 36% amorphous substances, the content of silicon is approximately 28%, and the ratios of Si/Al and Si/Ca are approximately 1.5 and 2.6, respectively. They are more suitable as precursor materials for geopolymers than mare samples. The compressive strength of lunar regolith geopolymer is mainly in the range of 18~30 MPa. Sodium silicate is the most commonly utilized activator for lunar regolith geopolymers; alkalinity in the range of 7% to 10% and modulus in the range of 0.8 to 2.0 are suitable. A vacuum environment and multiple temperature cycles reduce the mechanical properties of geopolymers by 8% to 70%. Future research should be concentrated on the precision control of the lunar regolith's chemical properties and the alkali activation efficacy of geopolymers in the lunar environment.

16.
Bioact Mater ; 39: 492-520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38883311

RESUMEN

Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.

17.
Bioresour Technol ; 404: 130917, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824969

RESUMEN

Electro-fermentation (EF) was combined with anaerobic fermentation (AF) to promote medium-chain fatty acid (MCFA) from sewage sludge. Results showed that EF at acidification process significantly increased short-chain fatty acid (SCFA) production of by 0.5 times (82.4 mmol C/L). AF facilitated the chain elongation (CE) process by enhancing the SCFA conversion. Combined EF at acidification and AF at CE (EF-AF) achieved the highest MCFA production of 27.9 mmol C/L, which was 20 %-866 % higher than the other groups. Electrochemical analyses showed that enhanced SCFA and MCFA production was accompanied with good electrochemical performance at acidification and CE. Microbial analyses showed that EF-AF promoted MCFA production by enriching electrochemically active bacteria (EAB, Bacillus sp.). Enzyme analyses indicated that EF-AF promoted MCFA production by enriching the functional enzymes involved in Acetyl-CoA formation and the fatty acid biosynthesis (FAB) pathway. This study provided new insights into the production of MCFA from enhanced sewage sludge.


Asunto(s)
Ácidos Grasos , Fermentación , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/metabolismo
18.
Alzheimers Dement ; 20(7): 4903-4913, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38895994

RESUMEN

INTRODUCTION: Arterial stiffness is linked to age-related cognitive dysfunction. Estimated pulse wave velocity (ePWV) is associated with cerebrovascular disease. We sought to determine whether ePWV was associated with cognition in a multiethnic population. METHODS: We included 1257 participants enrolled in a Northern Manhattan Study magnetic resonance imaging MRI-cognitive study (mean age 64 ± 8 years, 61% women, 67% Hispanic, 18% non-Hispanic Black, 15% non-Hispanic white) and analyzed cognitive performance at two time points, at enrollment and on an average 5.0 ± 0.6 years later. ePWV was calculated using baseline age and blood pressure. Cognition and cognitive change scores were regressed on ePWV in multivariable linear regression models. RESULTS: In adjusted models, ePWV (mean 11 ± 2 m/s) was significantly associated with cognition (b = -0.100, 95% CI, -0.120, -0.080) and cognitive change over time (b = -0.063, 95% CI, -0.082, -0.045). Effect modification by race and sex was found. DISCUSSION: In this multiethnic population, the associations of ePWV with cognitive performance underline the role of vascular stiffness in age-related cognitive decline. HIGHLIGHTS: ePWV is a modest but independent predictor of cognitive function and cognitive decline among older individuals. After adjustment, the ePWV measure was inversely associated with performance and decline in global cognition, processing speed, episodic memory, executive function, and semantic memory. After adjustment, modification of the association between ePWV and change in episodic memory and executive function by race and ethnicity was suggested by a significant interaction term. The association between ePWV and episodic memory decline was stronger in females.


Asunto(s)
Cognición , Análisis de la Onda del Pulso , Rigidez Vascular , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Cognición/fisiología , Rigidez Vascular/fisiología , Ciudad de Nueva York , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas/estadística & datos numéricos , Disfunción Cognitiva/etnología , Disfunción Cognitiva/fisiopatología , Etnicidad
19.
Adv Mater ; 36(28): e2311845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720198

RESUMEN

Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.


Asunto(s)
Reprogramación Celular , Animales , Humanos , Ratones , Reprogramación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Regeneración/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/citología , Nanopartículas/química
20.
Burns Trauma ; 12: tkae003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699464

RESUMEN

Sebaceous glands (SGs), as holocrine-secreting appendages, lubricate the skin and play a central role in the skin barrier. Large full-thickness skin defects cause overall architecture disruption and SG loss. However, an effective strategy for SG regeneration is lacking. Organoids are 3D multicellular structures that replicate key anatomical and functional characteristics of in vivo tissues and exhibit great potential in regenerative medicine. Recently, considerable progress has been made in developing reliable procedures for SG organoids and existing SG organoids recapitulate the main morphological, structural and functional features of their in vivo counterparts. Engineering approaches empower researchers to manipulate cell behaviors, the surrounding environment and cell-environment crosstalk within the culture system as needed. These techniques can be applied to the SG organoid culture system to generate functionally more competent SG organoids. This review aims to provide an overview of recent advancements in SG organoid engineering. It highlights some potential strategies for SG organoid functionalization that are promising to forge a platform for engineering vascularized, innervated, immune-interactive and lipogenic SG organoids. We anticipate that this review will not only contribute to improving our understanding of SG biology and regeneration but also facilitate the transition of the SG organoid from laboratory research to a feasible clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA