Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 263: 115368, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595347

RESUMEN

Soil ingestion by livestock is common in grazing ecosystems, but few studies have been conducted to assess its effect on the animal organism. The topic is worthy of attention because these potential effects are likely to be enriched in the food chain and interfere with animal and human health. In this study, we present an indoor feeding trial conducted based on a completely randomized design to comprehensively evaluate the effects of simulated soil ingestion during grazing on nutrient digestibility, rumen fermentation, and microflora, and mineral deposition in the organs and tissues of sheep. Eighteen Mutton Merino crossbred sheep (42.7 ± 2.34 kg) were randomly allotted to three treatments and fed diets containing 0% (Control), 5% (SOIL5), and 10% (SOIL10) for 62 d, including a 7-d metabolism trial. It was found that soil intake altered the rumen fermentation in sheep, as evidenced by a decrease in total volatile fatty acids (VFA) and acetate concentrations in rumen fluid of 50.6% and 51.3%, respectively (p < 0.01), with soil proportion in the diet increased from 0% to 10%. Soil ingestion also reduced the species richness of rumen bacteria, with the relative abundance of Bacteroidetes decreasing significantly (p < 0.01), while that of Firmicutes and Proteobacteria increased considerably (p < 0.05). In terms of mineral elements deposition, higher levels of iron (Fe) were detected in the spleen and liver, and a higher concentration of copper (Cu) and zinc (Zn) in the liver were found in sheep fed a diet containing 5% soil compared to the other two groups (p < 0.05). Moreover, the concentrations of lead (Pb) in the liver and kidney, and arsenic (As) in the heart were also clearly increased after ingestion of soil (p < 0.05). Our findings indicate that although soil intake had no significant effect on the growth performance of sheep, it altered ruminal fermentation and increased the risk of excessive Fe, Pb, and As in their organism. This study supplies a theoretical basis for risk assessment of soil ingestion in grazing livestock.


Asunto(s)
Arsénico , Ecosistema , Animales , Hierro , Plomo , Minerales , Rumen , Ovinos
2.
Toxins (Basel) ; 14(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35622607

RESUMEN

Experiments were conducted to evaluate the effects of an aflatoxin B1 (AFB1)-contaminated diet treated with ammonia on the diet detoxification and growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites in sheep. Twenty-four female mutton sheep with an initial body weight of 50 ± 2.5 kg were randomly assigned to one of three groups: (1) control diet (C); (2) aflatoxin diet (T; control diet supplemented with 75 µg of AFB1/kg of dry matter); and (3) ammoniated diet (AT; ammoniated aflatoxin diet). The results showed decreases (p < 0.05) in average daily feed intake, nutrient digestibility of dry matter, crude protein and ether extract, and retained nitrogen, and an increase (p < 0.05) in urine nitrogen excretion in sheep fed diet T compared with those fed the other diets. In comparison to C and AT, feeding T decreased (p < 0.05) the concentrations of total protein, immunoglobulin A, immunoglobulin G, immunoglobulin M, superoxide dismutase, and total antioxidants and increased (p < 0.05) the concentrations of alanine amino transferase, malondialdehyde, and interleukin-6. In summary, ammonia treatment has the potential to decrease the concentration of AFB1 and alleviate the adverse effects of AFB1.


Asunto(s)
Aflatoxina B1 , Alimentación Animal , Aflatoxina B1/toxicidad , Amoníaco , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Nitrógeno , Ovinos
3.
Genes (Basel) ; 11(2)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069836

RESUMEN

The aim of the study was to understand the internal relationship between milk quality and lipid metabolism in cow mammary glands. A serial of studies was conducted to assess the molecular mechanism of PRL/microRNA-183/IRS1 (Insulin receptor substrate) pathway, which regulates milk fat metabolism in dairy cows. microRNA-183 (miR-183) was overexpressed and inhibited in cow mammary epithelial cells (CMECs), and its function was detected. The function of miR-183 in inhibiting milk fat metabolism was clarified by triglycerides (TAG), cholesterol and marker genes. There is a CpG island in the 5'-flanking promoter area of miR-183, which may inhibit the expression of miR-183 after methylation. Our results showed that prolactin (PRL) inhibited the expression of miR-183 by methylating the 5' terminal CpG island of miR-183. The upstream regulation of PRL on miR-183 was demonstrated, and construction of the lipid metabolism regulation network of microRNA-183 and target gene IRS1 was performed. These results reveal the molecular mechanism of PRL/miR-183/IRS1 pathway regulating milk fat metabolism in dairy cows, thus providing an experimental basis for the improvement of milk quality.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/genética , Metabolismo de los Lípidos , Glándulas Mamarias Animales/citología , MicroARNs/genética , Leche/metabolismo , Prolactina/genética , Animales , Bovinos , Células Cultivadas , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Transducción de Señal
4.
J Sci Food Agric ; 99(15): 6751-6760, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31353469

RESUMEN

BACKGROUND: Yeast products showed beneficial effects with respect to stabilizing ruminal pH, stimulating ruminal fermentation and improving production efficiency. Batch cultures were conducted to evaluate the effects of yeast products on gas production (GP), dry matter disappearance (DMD) and fermentation characteristics of high-forage substrate. The study was a two media pH (5.8 and 6.5) × five yeasts (three live yeasts, LY: LY1, LY2, LY3; two yeast derivatives, YD: YD4, YD5) × four dosages factorial arrangement, with monensin (Mon) assigned as a positive control. RESULTS: Greater (P < 0.01) GP, DMD, volatile fatty acid (VFA) concentration, ratio of acetate to propionate (A:P) and copy numbers of Fibrobacter succinogenes and Ruminococcus flavefaciens were observed at pH 6.5 than at pH 5.8. The GP kinetics, DMD, VFA concentration, A:P and NH3 -N concentration differed (P < 0.05) among yeasts but varied with media pH or yeast dosages. Increasing doses of LY3 linearly increased DMD (P < 0.04) and VFA concentration (P < 0.001) at media pH 5.8. The DMD linearly (P < 0.02) increased with increased addition of YD4 (pH 6.5) and YD5 (pH 5.8) and the ratio of A:P linearly decreased (P < 0.01) with the addition of YD4 or YD5 at pH 5.8. Overall greater (P < 0.05) GP, A:P (pH 5.8) and DMD (pH 6.5) were observed with yeast products than with Mon. CONCLUSION: LY3 appeared to be an interesting candidate for improving rumen digestibility and fermentation efficiency, particularly at low media pH. YD4 or YD5 improved fermentation efficiency and can be potentially fed as an alternative to Mon. © 2019 Her Majesty the Queen in Right of Canada Journal of the Science of Food and Agriculture © 2019 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/microbiología , Bovinos/metabolismo , Rumen/química , Saccharomyces cerevisiae/química , Levadura Seca/química , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bovinos/crecimiento & desarrollo , Bovinos/microbiología , Digestión , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Concentración de Iones de Hidrógeno , Rumen/metabolismo , Rumen/microbiología , Saccharomyces cerevisiae/clasificación , Levadura Seca/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA