RESUMEN
The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.
Asunto(s)
Benzofuranos , Sistemas de Liberación de Medicamentos , Liposomas , Células Madre Mesenquimatosas , Daño por Reperfusión , Animales , Daño por Reperfusión/terapia , Masculino , Benzofuranos/administración & dosificación , Isquemia Encefálica/terapia , Materiales Biomiméticos/química , Materiales Biomiméticos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Trasplante de Células Madre Mesenquimatosas/métodosRESUMEN
There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.
Asunto(s)
Productos Biológicos , Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Acetaminofén , Productos Biológicos/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hidrogeles , Medicina Tradicional ChinaRESUMEN
Bi2Fe4O9(BFO) nanocubes were prepared in proportion using a simple and easy hydrothermal method, and were then assembled on reduced graphene oxide (rGO) multilayered sheets. The excellent microwave absorption properties of Bi2Fe4O9/rGO nanohybrids were achieved by properly adjusting the impedance matching and getting a high attenuation capability contributed from different ratios of the BFO and rGO. A minimum reflection loss value of -61.5 dB at 12.8 GHz was obtained with a Bi2Fe4O9/rGO ratio of 2:1, and the broadest bandwidth below -10 dB was up to 5.0 GHz (from 10.8 to 15.8 GHz) with a thickness of 2.4 mm. Additionally, the elementary mechanism of wave absorption performance is also investigated.
RESUMEN
Two novel Schiff bases derived from indole and biphenyl have been designed and synthesized, namely 3-((E)-{(E)-[1-(biphenyl-4-yl)ethylidene]hydrazinylidene}methyl)-1-methyl-1H-indole (3-BEHMI) acetonitrile monosolvate, C24H21N3·CH3CN, and 3-((E)-{(E)-[1-(biphenyl-4-yl)ethylidene]hydrazinylidene}methyl)-1-methyl-1H-indole (3-BEHEI) acetonitrile monosolvate, C24H21N3·CH3CN. Their structures were characterized by elemental analysis, quadrupole time-of-flight MS, NMR and UV-Vis spectroscopy. The single-crystal packing structure of 3-BEHMI is largely dominated by C-H...π interactions and weak van der Waals interactions. The in vitro cytotoxicity of the two title compounds have been evaluated against two tumour cell lines (A549 human lung cancer and 4T1 mouse breast cancer) and two normal cell lines (MRC-5 normal lung cells and NIH 3T3 fibroblasts) by MTT assay. The results indicate that 3-BEHEI exhibits a slightly weaker antiproliferative capability (IC50 = â¼50â µM) than the previously reported similar Schiff base 3-BEHI (IC50 = â¼20â µM). This is in line with docking results. 3-BEHMI demonstrates a weak cytotoxic activity, with IC50 values around 110â µM, which disagrees with its docking results. Overall, the tested compounds manifest relevant cytotoxicities on the selected cancer cell lines and normal cell lines. The UV-Vis and fluorescence spectra were recorded and reproduced through the TD-DFT method with four types of hybrid density functionals, including B3LYP, M062X, PBE1PBE and WB97XD.