Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Exp Ther Med ; 28(5): 426, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301255

RESUMEN

The treatment strategy of patients with locally advanced gastric cancer has undergone notable changes since immune checkpoint inhibitors (ICIs) were developed. Although ICIs are generally well-tolerated, they can also cause serious adverse events, such as autoimmune diseases. In patients with gastric cancer and without a history of immune disease, the incidence of myasthenia gravis combined with myocarditis caused by ICI treatment is rare. Furthermore, cases of gastric cancer with ocular myasthenia gravis, without limb weakness or severe dyspnea, although with urination difficulties and symptoms of third-degree atrioventricular block have not been previously reported, to the best of our knowledge. The present study describes the case of a 72-year-old male patient with locally advanced gastric cancer that was treated with chemoimmunotherapy with oxaliplatin + tigio + sintilimab. At 19 days following only one cycle of therapy, the patient developed a left eyelid weakness and difficulty in urinating, as well as diplopia. At 5 days after the symptom of eyelid weakness, a third-degree atrioventricular block occurred. Hormone therapy, a temporary pacemaker and gamma-globulin therapy were administered, and the patient was discharged 1 month later with the resolution of myasthenia gravis and the atrioventricular block. At the final follow-up (1 month after discharge), the patient had a full recovery from myasthenia gravis and arrhythmias. Although some similar cases have been previously reported, the majority of patients with limb weakness and have eventually succumbed; moreover, clinical symptoms were identified at a late stage, and the disease evolution records were not detailed. Therefore, the present study describes the case of the patient and treatment strategy, also providing detailed laboratory indicators and clinical symptom evolution. This was performed with the aim to aid future research and the treatment of immune-related diseases.

2.
J Hazard Mater ; 477: 135264, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032175

RESUMEN

Nontoxic substitutes to mycotoxins can facilitate the development of eco-friendly immunoassays. To explore a novel nontoxic substitute to ochratoxin A (OTA), this study screened shark anti-idiotypic variable new antigen receptors (VNARs) against the alpaca anti-OTA nanobody Nb28 through phage display. After four rounds of biopanning of a naïve VNAR phage display library derived from six adult Chiloscyllium plagiosum sharks, one positive clone, namely, P-3, was validated through a phage enzyme-linked immunosorbent assay (phage ELISA). The recombinant anti-idiotypic VNAR AId-V3 was obtained by prokaryotic expression, and the interactions between Nb28 and AId-V3 were investigated via computer-assisted simulation. The affinity of AId-V3 for Nb28 and its heptamer Nb28-C4bpα was measured using Biacore assay. Combining Nb28-C4bpα with AId-V3, a novel direct competitive ELISA (dcELISA) was developed for OTA analysis, with a limit of detection of 0.44 ng/mL and a linear range of 1.77-32.25 ng/mL. The good selectivity, reliability, and precision of dcELISA were confirmed via cross-reaction analysis and recovery experiments. Seven commercial pepper powder samples were tested using dcELISA and validated using high-performance liquid chromatography. Overall, the shark anti-idiotypic VNAR was demonstrated as a promising nontoxic substitute to OTA, and the proposed method was confirmed as a reliable tool for detecting OTA in food.


Asunto(s)
Camélidos del Nuevo Mundo , Ensayo de Inmunoadsorción Enzimática , Ocratoxinas , Tiburones , Anticuerpos de Dominio Único , Ocratoxinas/análisis , Ocratoxinas/inmunología , Tiburones/inmunología , Animales , Camélidos del Nuevo Mundo/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos Antiidiotipos/inmunología , Receptores de Antígenos/inmunología
3.
Foods ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998516

RESUMEN

Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals. Therefore, the development of sensitive and efficient detection methods for DON is essential to guarantee food safety and human health. In this study, an enzyme cascade amplification-based immunoassay (ECAIA) using a dual-functional alkaline phosphatase-linked single-chain fragment variable fusion tracer (scFv-ALP) and MnO2 nanosheets was established for DON detection. The scFv-ALP effectively catalyzes the hydrolysis of ascorbyl-2-phosphate (AAP) to produce ascorbic acid (AA). This AA subsequently interacts with MnO2 nanosheets to initiate a redox reaction that results in the loss of oxidizing properties of MnO2. In the absence of ALP, MnO2 nanosheets can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to produce the blue oxidized product of TMB, which exhibits a signal at a wavelength of 650 nm for quantitative analysis. After optimization, the ECAIA had a limit of detection of 0.45 ng/mL and a linear range of 1.2-35.41 ng/mL. The ECAIA exhibited good accuracy in recovery experiments and high selectivity for DON. Moreover, the detection results of the actual corn samples correlated well with those from high-performance liquid chromatography. Overall, the proposed ECAIA based on the scFv-ALP and MnO2 nanosheets was demonstrated as a reliable tool for the detection of DON in corn samples.

4.
Biosens Bioelectron ; 259: 116401, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761743

RESUMEN

Rapid, portable, and accurate detection tools for monitoring ochratoxin A (OTA) in food are essential for the guarantee of food safety and human health. Herein, as a proof-of-concept, this study proposed a ratiometric bioluminescence immunosensor (RBL-immunosensor) for homogeneous detection of OTA in pepper. The construct of the RBL-immunosensor consists of three components, including the large fragment of the split nanoluciferase (NanoLuc)-tagged nanobody (NLg), the small fragment of the split NanoLuc-tagged mimotope peptide heptamer (MPSm), and the calibrator luciferase (GeNL). The specific nanobody-mimotope peptide interaction between NLg and MPSm induces the reconstitution of the NanoLuc, which catalyzes the Nano-Glo substrate and produces a blue emission peak at 458 nm. Meanwhile, GeNL can produce a green emission peak at 518 nm upon substrate conversion via bioluminescent resonance energy transfer (BRET). Therefore, the concentration of OTA can be linked to the variation of the bioluminescence signal (λ458/λ518) measured by microplate reader and the variation of the blue/green ratio measured by smartphone via the competitive immunoreaction where OTA competes with MPSm to bind NLg. The immunosensor is ready-to-use and works by simply mixing the components in a one-step incubation of 10 min for readout. It has a limit of detection (LOD) of 0.98 ng/mL by a microplate reader and an LOD of 1.89 ng/mL by a smartphone. Good selectivity and accuracy were confirmed for the immunosensor by cross-reaction analysis and recovery experiments. The contents of OTA in 10 commercial pepper powder samples were tested by the RBL-immunosensor and validated by high-performance liquid chromatography. Hence, the ready-to-use RBL-immunosensor was demonstrated as a highly reliable tool for detection of OTA in food.


Asunto(s)
Técnicas Biosensibles , Capsicum , Contaminación de Alimentos , Límite de Detección , Mediciones Luminiscentes , Ocratoxinas , Ocratoxinas/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Capsicum/química , Humanos
5.
Food Chem ; 453: 139623, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761730

RESUMEN

Ochratoxin A (OTA) in food poses a serious challenge to public health. Herein, using the nanobody-driven controllable aggregation of gold nanoparticles (AuNPs) in a glucose oxidase-tyramine-horseradish peroxidase (GOx-TYR-HRP) system, we propose a direct competitive plasmonic enzyme immunoassay (dc-PEIA) for OTA detection. The OTA-GOx conjugate catalyzes glucose to produce hydrogen peroxide (H2O2), and then HRP catalyzes H2O2 to generate hydroxyl radical which induces the crosslink of TYR. Crosslinked TYR leads to aggregation of AuNPs through strong electrostatic interactions, which is tunable based on the competition of OTA-GOx and free OTA for binding the immobilized nanobody. The optimized dc-PEIA achieves an instrumental limit of detection (LOD) of 0.275 ng/mL and a visual LOD of 1.56 ng/mL. It exhibits good selectivity for OTA and accuracy in the analysis of pepper samples, with the confirmation of high-performance liquid chromatography. Overall, the dc-PEIA is demonstrated as a useful tool for detecting OTA in food.


Asunto(s)
Capsicum , Contaminación de Alimentos , Oro , Nanopartículas del Metal , Ocratoxinas , Ocratoxinas/análisis , Oro/química , Nanopartículas del Metal/química , Capsicum/química , Capsicum/inmunología , Contaminación de Alimentos/análisis , Técnicas para Inmunoenzimas/métodos , Límite de Detección , Glucosa Oxidasa/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Peroxidasa de Rábano Silvestre/química , Técnicas Biosensibles
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124300, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640626

RESUMEN

Owing to good flexibility, prominent mechanical properties, three-dimensional (3D) nanofibrous structure and low background interference, sustainable bacterial nanocellulose (BNC) is a highly attractive matrix material for surface-enhanced Raman scattering (SERS) sensor. Herein, a highly sensitive, flexible and scalable silver nanorod-decorated BNC (AgNRs@BNC) SERS sensor is developed by a simple vacuum-assisted filtration. The AgNRs were firmly locked in the 3D nanofibrous network of cellulose nanofibers upon vacuum drying process, resulting in the formation of 3D SERS hotspots with a depth of more than 10 µm on the sensor. With 4-aminothiophenol (4-ATP) as a target molecule, a lowest distinguishable level of 10-12 M and a high enhancement factor of 1.1 × 109 were realized by the optimal AgNRs1.5@BNC SERS sensor. Moreover, the AgNRs@BNC SERS sensor exhibits high detectable level of 10-9 M for thiram molecules by integrating with a portable Raman spectrometer. Besides, toxic thiram residues on grape surface could be directly on-site identified by the combination of AgNRs@BNC SERS sensors and a portable Raman spectrometer through a feasible press-and-peel method. The flexible AgNRs@BNC SERS sensor cooperated with portable Raman system demonstrates great potential for on-site detection of pesticide residues on irregular food surfaces.


Asunto(s)
Celulosa , Nanotubos , Residuos de Plaguicidas , Plata , Espectrometría Raman , Espectrometría Raman/métodos , Plata/química , Celulosa/química , Nanotubos/química , Residuos de Plaguicidas/análisis , Tiram/análisis , Compuestos de Anilina/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Bacterias , Vitis/química , Límite de Detección
7.
Anal Bioanal Chem ; 416(12): 2929-2939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491149

RESUMEN

Deoxynivalenol (DON) is a mycotoxin that widely distributes in various foods and seriously threatens food safety. To minimize the consumers' dietary exposure to DON, there is an urgent demand for developing rapid and sensitive detection methods for DON in food. In this study, a bifunctional single-chain variable fragment (scFv) linked alkaline phosphatase (ALP) fusion protein was developed for rapid and sensitive detection of deoxynivalenol (DON). The scFv gene was chemically synthesized and cloned into the expression vector pET25b containing the ALP gene by homologous recombination. The prokaryotic expression, purification, and activity analysis of fusion proteins (scFv-ALP and ALP-scFv) were well characterized and performed. The interactions between scFv and DON were investigated by computer-assisted simulation, which included hydrogen bonds, hydrophobic interactions, and van der Waals forces. The scFv-ALP which showed better bifunctional activity was selected for developing a direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for DON in cereals. The dc-ELISA takes 90 min for one test and exhibits a half inhibitory concentration (IC50) of 11.72 ng/mL, of which the IC50 was 3.08-fold lower than that of the scFv-based dc-ELISA. The developed method showed high selectivity for DON, and good accuracy was obtained from the spike experiments. Furthermore, the detection results of actual cereal samples analyzed by the method correlated well with that determined by high-performance liquid chromatography (R2=0.97165). These results indicated that the scFv-ALP is a promising bifunctional probe for developing the one-step colorimetric immunoassay, providing a new strategy for rapid and sensitive detection of DON in cereals.


Asunto(s)
Fosfatasa Alcalina , Grano Comestible , Ensayo de Inmunoadsorción Enzimática , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única , Tricotecenos , Tricotecenos/análisis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Grano Comestible/química , Fosfatasa Alcalina/química , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Contaminación de Alimentos/análisis , Límite de Detección
8.
J Hazard Mater ; 468: 133821, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377914

RESUMEN

Tropomyosin (TM) is the primary allergenic protein responsible for crustacean food allergies, and thus sensitive and rapid methods are required for the screening of crustacean TM in food. In this study, using the phage-displayed shark nanobody (PSN) as a multifunctional biomaterial, we developed a colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor (CM/SERS-LFI) for competitive detection of crustacean TM. The SERS tag AuMBA@AgNPs with the Raman signal molecule 4-mercaptobenzoic acid (4-MBA) was prepared and immobilized on the PSN to construct the immunoprobe AuMBA@Ag-PSN. The probe can identify free TM that competes with TM on the T-line, and the optimized CM/SERS-LFI enables quantitative analysis of TM using the probe with a limit of detection (LOD) of 0.0026 µg/mL (SERS mode) and 0.0057 µg/mL (colorimetric mode), respectively. Additionally, it can implement a qualitative analysis by the naked eye with a visual LOD of 0.01 µg/mL. The CM/SERS-LFI exhibited excellent performance in the tests of selectivity, accuracy, precision, and stability. Moreover, the method's effectiveness in the analysis of real samples was confirmed by a commercial ELISA kit. Therefore, the developed CM/SERS-LFI was demonstrated to be a powerful and reliable tool for the rapid and sensitive detection of crustacean TM in food.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Nanopartículas del Metal , Alérgenos , Oro , Tropomiosina , Espectrometría Raman/métodos , Colorimetría , Técnicas Biosensibles/métodos , Plata , Inmunoensayo , Alimentos Marinos
9.
Anal Chem ; 96(10): 4242-4250, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408370

RESUMEN

Sensitive detection of cancer biomarkers can contribute to the timely diagnosis and treatment of diseases. In this study, the whitespotted bamboo sharks were immunized with human α-fetoprotein (AFP), and a phage-displayed variable new antigen receptor (VNAR) single domain antibody library was constructed. Then four unique VNARs (VNAR1, VNAR11, VNAR21, and VNAR25) against AFP were isolated from the library by biopanning for the first time. All of the sequences belong to type II of VNAR, and the VNAR11 was much different from the rest of the three sequences. Then VNAR1 and VNAR11 were selected to fuse with the C4-binding protein α chain (C4bpα) sequence and efficiently expressed in the Escherichia coli system. Furthermore, a VNAR-C4bpα-mediated sandwich chemiluminescence immunoassay (VSCLIA) was developed for the detection of AFP in human serum samples. After optimization, the VSCLIA showed a limit of detection of 0.74 ng/mL with good selectivity and accuracy. Moreover, the results of clinical serum samples detected by the VSCLIA were confirmed by an automatic immunoanalyzer in the hospital, indicating its practical application in actual samples. In conclusion, the novel antibody element VNAR exhibits great potential for immunodiagnosis, and this study also provides a new direction and experimental basis for AFP detection.


Asunto(s)
Tiburones , Anticuerpos de Dominio Único , Animales , Humanos , alfa-Fetoproteínas , Tiburones/metabolismo , Anticuerpos , Suero/metabolismo , Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Antígenos
10.
Food Chem ; 443: 138569, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306906

RESUMEN

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin and seriously threatens food safety, which requires rapid and sensitive detection methods for monitoring ZEN in agro-products. Herein, an alkaline phosphatase-tagged single-chain variable fragment fusion protein (ALP-scFv) was used as a bifunctional tracer to develop a colorimetric enzyme immunoassay (CEIA) and a chemiluminescent enzyme immunoassay (CLEIA) for ZEN. In addition, the interactions between scFv and ZEN were exploited by computer-assisted simulation, and four key amino acid sites were preliminarily identified. After optimization, the CEIA and CLEIA exhibited a limit of detection of 0.02 and 0.006 ng/mL, respectively. Furthermore, both methods showed favorable accuracy in recovery experiments and good selectivity in cross reactions. Moreover, the detection results of the actual samples from both methods correlated well with those from high-performance liquid chromatography. Overall, the ALP-scFv fusion tracer-based CEIA and CLEIA are demonstrated as reliable tools for ZEN detection in food.


Asunto(s)
Anticuerpos de Cadena Única , Zearalenona , Fosfatasa Alcalina/metabolismo , Zearalenona/análisis , Colorimetría , Técnicas para Inmunoenzimas , Colorantes/análisis , Contaminación de Alimentos/análisis , Inmunoensayo/métodos
11.
Foods ; 13(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254545

RESUMEN

The aim of this study was to investigate the bacterial inhibitory ability and mechanism of action of linalyl alcohol against B. thermosphacta. Linalyl alcohol causes the leakage of intracellular material by disrupting the cell wall and exposing the hydrophobic phospholipid bilayer, which binds to bacterial membrane proteins and alters their structure. In addition, linalyl alcohol causes cell membrane damage by affecting fatty acids and proteins in the cell membrane. By inhibiting the synthesis of macromolecular proteins, the normal physiological functions of the bacteria are altered. Linalyl alcohol binds to DNA in both grooved and embedded modes, affecting the normal functioning of B. thermosphacta, as demonstrated through a DNA interaction analysis.

12.
J Agric Food Chem ; 72(3): 1811-1821, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38166198

RESUMEN

The common food allergy crustacean tropomyosin (TM) poses a significant food safety challenge, which requires rapid and sensitive methods for screening TM in food. Herein, the variable new antigen receptor (VNAR) single-domain antibodies specific for the crustacean TM were isolated from a naïve phage-displayed shark VNAR library. Subsequently, a lateral flow immunochromatographic assay (LFIA) based on the gold nanoparticle-labeled phage-displayed shark VNAR (AuNPs@PSV) probe was developed for the detection of TM in food. The AuNPs@PSV-LFIA took 15 min for one test and had a visual limit of detection (vLOD) of 0.1 µg/mL and an instrumental LOD of 0.02 µg/mL. Good selectivity, accuracy, precision, and stability were confirmed for the AuNPs@PSV-LFIA. Moreover, the test results of 21 commercially available food products consisted of the allergen labels and were validated by a commercial ELISA kit. Therefore, this work demonstrated the great potential of VNAR for detecting TM in food by LFIA.


Asunto(s)
Bacteriófagos , Nanopartículas del Metal , Tiburones , Anticuerpos de Dominio Único , Animales , Alérgenos/análisis , Oro , Tropomiosina , Crustáceos , Ensayo de Inmunoadsorción Enzimática/métodos
13.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37983139

RESUMEN

Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.

14.
Food Chem ; 429: 137018, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517225

RESUMEN

Mimotope-based immunoassays for mycotoxins eliminate the requirement for large amounts of mycotoxin standards for the chemosynthesis of artificial antigens. Herein, the nanobody-based magnetic beads were used to screen the mimotope (peptidomimetic) of ochratoxin A (OTA) from the phage-displayed peptide library. The interactions between nanobody and the most sensitive Y4 peptidomimetic were investigated by computer-assisted simulation and compared with those between nanobody and OTA. By combining the nanobody, the phage-displayed Y4 and alkaline phosphatase-tagged Y4 fusion protein as the competing antigens, were used to develop two novel immunoassay platforms (PN-ELISA and APN-ELISA). The two methods are advantageous in the use of nontoxic substitutes of OTA and avoiding the use of monoclonal antibodies. Moreover, good analytical performances of both methods were obtained and confirmed by liquid chromatography tandem mass spectrometry. Therefore, the proposed novel methods based on nanobody and peptidomimetic were demonstrated to be highly reliable for detecting OTA in food.


Asunto(s)
Micotoxinas , Ocratoxinas , Peptidomiméticos , Grano Comestible/química , Peptidomiméticos/análisis , Ocratoxinas/análisis , Inmunoensayo/métodos , Micotoxinas/análisis
15.
J Hazard Mater ; 437: 129435, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35753304

RESUMEN

Hazardous small molecules in food and environment seriously threatens human health, which requires sensitive and rapid tools for monitoring. Using a previously identified nanobody against ochratoxin A (OTA), we herein proposed a homogeneous sensing platform "nanobody/NanoLuc Binary Technology (NanoBiT) system" and developed a nanobody/NanoBiT system-mediated bioluminescence immunosensor (NBL-Immunosens) for OTA using LgBiT (Lg) and SmBiT (Sm), two subunits of the split nanoluciferase (NanoLuc). The core elements of NBL-Immunosens include Lg-nanobody fusion (NLg) and Sm-labeled OTA-bovine serum albumin conjugate (OSm). The antigen-antibody interaction between NLg and OSm triggers the reconstitution of NanoLuc for generating luminescence signals. Moreover, free OTA can compete with OSm for binding to NLg, resulting the decrease of dose-dependent signals. NBL-Immunosens can detect OTA in a one-step assay of 5 min without washing and exhibit a limit of detection of 0.01 ng/mL with a linear range of 0.04-2.23 ng/mL. It shows high selectivity for OTA and has good accuracy and precision in the spiking-and-recovery experiments. Furthermore, its effectiveness was evaluated with real cereal samples and confirmed by liquid chromatography tandem mass spectrometry and commercial ELISA kits. Hence, the NBL-Immunosens is a very promising tool for rapid, accurate, and selective detection of trace OTA in food.


Asunto(s)
Técnicas Biosensibles , Ocratoxinas , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Humanos , Inmunoensayo/métodos , Ocratoxinas/análisis , Tecnología
16.
Int J Biol Macromol ; 201: 507-515, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063488

RESUMEN

Alpha fetoprotein (AFP) is an important biomarker for diagnosis of hepatocellular carcinoma (HCC). Whereas, it is always a challenge to detect trace AFP in serum. In this work, a ratiometric fluorescence enzyme immunoassay (RFEIA) was developed using nanobody-alkaline phosphatase (Nb-AP) heptamer and MnFe layered double hydroxides nanoflakes (MnFe LDH) for ultrasensitive detection of AFP. The Nb-AP heptamer (Nb-C4bpα-AP) was constructed by fusion expression of Nb, AP, and α-chain of C4 binding protein (C4bpα), where the C4bpα contributed to multimerization through self-assembly. The dual functional Nb-C4bpα-AP can recognize AFP, dephosphorylate ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and thus tune the MnFe LDH-mediated ratiometric fluorescence, which was generated from the oxidization of MnFe LDH on o-phenylenediamine (OPD) and the catalyzation of MnFe LDH on the cyclization reaction between AA and OPD. By integration of Nb-C4bpα-AP, MnFe LDH, AAP, and OPD, the RFEIA showed a limit of detection of 0.013 ng/mL with good selectivity, accuracy and precision. Furthermore, results of clinical serum samples tested by the RFEIA were well confirmed by the automated chemiluminescence immunoassay analyzer. Thus, this work demonstrated that the Nb-C4bpα-AP is a robust immunoreagent and the developed RFEIA could be a very promising tool for diagnosis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfatasa Alcalina , Carcinoma Hepatocelular/diagnóstico , Fluorescencia , Humanos , Neoplasias Hepáticas/diagnóstico , alfa-Fetoproteínas
17.
J Hazard Mater ; 422: 126838, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34411960

RESUMEN

Ochratoxin A (OTA) contamination in food is a serious threat to public health. There is an urgent need for development of rapid and sensitive methods for OTA detection, to minimize consumer exposure to OTA. In this study, we constructed two OTA-specific fluonanobodies (FluoNbs), with a nanobody fused at the carboxyl-terminal (SGFP-Nb) or the amino-terminal (Nb-SGFP) of superfolder green fluorescence protein. SGFP-Nb, which displayed better fluorescence performance, was selected as the tracer for OTA, to develop a FluoNb-based nanosensor (FN-Nanosens) via the fluorescence resonance energy transfer, where the SGFP-Nb served as the donor and the chemical conjugates of OTA-quantum dots served as the acceptor. After optimization, FN-Nanosens showed a limit of detection of 5 pg/mL, with a linear detection range of 5-5000 pg/mL. FN-Nanosens was found to be highly selective for OTA and showed good accuracy and repeatability in recovery experiments using cereals with various complex matrix environments. Moreover, the contents of OTA in real samples measured using FN-Nanosens correlated well with those from the liquid chromatography with tandem mass spectrometry. Therefore, this work illustrated that the FluoNb is an ideal immunosensing tool and that FN-Nanosens is reliable for rapid detection of OTA in cereals with ultrahigh sensitivity.


Asunto(s)
Ocratoxinas , Puntos Cuánticos , Grano Comestible/química , Transferencia Resonante de Energía de Fluorescencia , Contaminación de Alimentos/análisis , Ocratoxinas/análisis
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120088, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34167066

RESUMEN

Sensitive detection of liver disease biomarkers can facilitate the diagnosis of primary hepatoma and other benign liver diseases, and the alpha fetoprotein (AFP) was selected as the model macromolecule in this work. Herein an enzyme cascade-amplified immunoassay (ECAIA) based on the nanobody-alkaline phosphatase fusion (Nb-ALP) and MnO2 nanoflakes was developed for detecting AFP. The bifunctional biological macromolecule Nb-ALP serves as the detection antibody and the reporter molecule. The MnO2 nanoflakes mimic the oxidase for catalyzing the 3,3',5,5'-tetramethylbenzidine (TMB) into the blue oxidized TMB, which has a quantitative signal at the wavelength of 650 nm. Moreover, the Nb-ALP could dephosphorylate the ascorbic acid-2-phosphate (AAP) to form the ascorbic acid (AA) that can disintegrate the nanoflakes to reduce their oxidation capacity with the content decrease of the oxidized TMB. Using the constructed TMB-MnO2 colorimetric sensing system for Nb-ALP and the optimized experimental parameters, the ECAIA has a limit of detection (LOD) of 0.148 ng/mL which is 18.7-fold lower than that of the p-nitrophenylphosphate (pNPP)-based method (LOD = 2.776 ng/mL). The ECAIA showed good selectivity for AFP with observed negligible cross-reactions with several common cancer biomarkers. The recovery rate for AFP spiked in human serum ranged from 94.8% to 113% with the relative standard deviation from 0.3% to 6.5%. For analysis of the actual human serum samples, a good linear correlation was found between the results tested by the ECAIA and the automatic chemiluminescence analyzer. Thus, the ECAIA was demonstrated to be a promising tool for highly sensitive and selective detection of AFP, providing a reference for analysis of other macromolecule biomarkers.


Asunto(s)
Fosfatasa Alcalina , alfa-Fetoproteínas , Colorimetría , Humanos , Inmunoensayo , Límite de Detección , Compuestos de Manganeso , Óxidos
19.
RSC Adv ; 11(35): 21760-21766, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35478809

RESUMEN

Ochratoxin A (OTA) is a common food contaminant with multiple toxicities and thus rapid and accurate detection of OTA is indispensable to minimize the threat of OTA to public health. Herein a novel enzyme cascade-amplified immunoassay (ECAIA) based on the mutated nanobody-alkaline phosphatase fusion (mNb-AP) and MnO2 nanosheets was established for detecting OTA in coffee. The detection principle is that the dual functional mNb-AP could specifically recognize OTA and dephosphorylate the ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and the MnO2 nanosheets mimicking the oxidase could be reduced by AA into Mn2+ and catalyze the 3,3',5,5'-tetramethyl benzidine into blue oxidized product for quantification. Using the optimal conditions, the ECAIA could be finished within 132.5 min and shows a limit of detection of 3.38 ng mL-1 (IC10) with an IC50 of 7.65 ng mL-1 and a linear range (IC20-IC80) of 4.55-12.85 ng mL-1. The ECAIA is highly selective for OTA. Good recovery rates (84.3-113%) with a relative standard deviation of 1.3-3% were obtained and confirmed by high performance liquid chromatography with a fluorescence detector. The developed ECAIA was demonstrated to be a useful tool for the detection of OTA in coffee which provides a reference for the analysis of other toxic small molecules.

20.
Anal Methods ; 12(39): 4742-4748, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32924033

RESUMEN

Alpha fetal protein (AFP) is a significant biomarker of liver cancer. Herein we developed a novel phage-mediated double-nanobody sandwich immunoassay (P-ELISA) for sensitive detection of AFP in serum, where the phage displayed the nanobody for antigen recognition and multiple copies of major coat protein pVIII for signal amplification. The expressed nanobody Nb-A1 and the phage-displayed nanobody phage-A2 served as the capture antibody and detection antibody, respectively. Based on the optimal experimental conditions, the P-ELISA has a half maximal saturation concentration of 24.85 ng mL-1 and a limit of detection of 0.237 ng mL-1 for AFP. The P-ELISA is highly selective for AFP and ignorable cross-reactions were observed with other tested cancer biomarkers. After elimination of the matrix effect by 30-fold dilution with 0.5 × PBS, clinical serum samples were analyzed by the P-ELISA. The results correlated well with those of the AFP commercial ELISA kit and the Roche E601 automatic chemiluminescence analyzer. Thus, it showed the potential of the recombinant phage for highly sensitive and selective detection of AFP and provides a novel detection model for the other disease-related biomarkers.


Asunto(s)
Bacteriófagos , Anticuerpos de Dominio Único , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo , alfa-Fetoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA