Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Control Release ; 375: 300-315, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39265826

RESUMEN

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a high-mortality disease caused by multiple disorders such as COVID-19, influenza, and sepsis. Current therapies mainly rely on the inhalation of nitric oxide or injection of pharmaceutical drugs (e.g., glucocorticoids); however, their toxicity, side effects, or administration routes limit their clinical application. In this study, pachypodol (Pac), a hydrophobic flavonol with anti-inflammatory effects, was extracted from Pogostemon cablin Benth and intercalated in liposomes (Pac@liposome, Pac-lipo) to improve its solubility, biodistribution, and bioavailability, aiming at enhanced ALI/ARDS therapy. Nanosized Pac-lipo was confirmed to have stable physical properties, good biodistribution, and reliable biocompatibility. In vitro tests proved that Pac-lipo has anti-inflammatory property and protective effects on endothelial and epithelial barriers in lipopolysaccharide (LPS)-induced macrophages and endothelial cells, respectively. Further, the roles of Pac-lipo were validated on treating LPS-induced ALI in mice. Pac-lipo showed better effects than did Pac alone on relieving ALI phenotypes: It significantly attenuated lung index, improved pulmonary functions, inhibited cytokine expression such as TNF-α, IL-6, IL-1ß, and iNOS in lung tissues, alleviated lung injury shown by HE staining, reduced protein content and total cell number in bronchoalveolar lavage fluid, and repaired lung epithelial and vascular endothelial barriers. As regards the underlying mechanisms, RNA sequencing results showed that the effects of the drugs were associated with numerous immune- and inflammation-related signaling pathways. Molecular docking and western blotting demonstrated that Pac-lipo inhibited the activation of the TLR4-MyD88-NF-κB/MAPK signaling pathway. Taken together, for the first time, our new drug (Pac-lipo) ameliorates ALI via inhibition of TLR4-MyD88-NF-κB/MAPK pathway-mediated inflammation and disruption of lung barrier. These findings may provide a promising strategy for ALI treatment in the clinic.

2.
Front Pediatr ; 12: 1420196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170602

RESUMEN

Introduction: COVID-19 constitutes a pandemic of significant detriment to human health. This study aimed to investigate the prevalence of Long COVID following SARS-CoV-2 infection, analyze the potential predictors of chest CT for the development of Long COVID in children. Methods: A cohort of children who visited the respiratory outpatient clinics at Shanghai Children's Medical Center or Linyi Maternal and Child Health Care Hospital from December 2022 to February 2023 and underwent chest CT scans within 1 week was followed up. Data on clinical characteristics, Long COVID symptoms, and chest CT manifestations were collected and analyzed. Multivariate logistic regression models and decision tree models were employed to identify factors associated with Long COVID. Results: A total of 416 children were included in the study. Among 277 children who completed the follow-up, the prevalence of Long COVID was 23.1%. Chronic cough, fatigue, brain fog, and post-exertional malaise were the most commonly reported symptoms. In the decision tree model for Long COVID, the presence of increased vascular markings, the absence of normal CT findings, and younger age were identified as predictors associated with a higher likelihood of developing Long COVID in children. However, no significant correlation was found between chest CT abnormality and the occurrence of Long COVID. Discussion: Long COVID in children presents a complex challenge with a significant prevalence rate of 23.1%. Chest CT scans of children post-SARS-CoV-2 infection, identified as abnormal with increased vascular markings, indicate a higher risk of developing Long COVID.

3.
Eur Radiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985185

RESUMEN

OBJECTIVES: The accurate detection and precise segmentation of lung nodules on computed tomography are key prerequisites for early diagnosis and appropriate treatment of lung cancer. This study was designed to compare detection and segmentation methods for pulmonary nodules using deep-learning techniques to fill methodological gaps and biases in the existing literature. METHODS: This study utilized a systematic review with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, searching PubMed, Embase, Web of Science Core Collection, and the Cochrane Library databases up to May 10, 2023. The Quality Assessment of Diagnostic Accuracy Studies 2 criteria was used to assess the risk of bias and was adjusted with the Checklist for Artificial Intelligence in Medical Imaging. The study analyzed and extracted model performance, data sources, and task-focus information. RESULTS: After screening, we included nine studies meeting our inclusion criteria. These studies were published between 2019 and 2023 and predominantly used public datasets, with the Lung Image Database Consortium Image Collection and Image Database Resource Initiative and Lung Nodule Analysis 2016 being the most common. The studies focused on detection, segmentation, and other tasks, primarily utilizing Convolutional Neural Networks for model development. Performance evaluation covered multiple metrics, including sensitivity and the Dice coefficient. CONCLUSIONS: This study highlights the potential power of deep learning in lung nodule detection and segmentation. It underscores the importance of standardized data processing, code and data sharing, the value of external test datasets, and the need to balance model complexity and efficiency in future research. CLINICAL RELEVANCE STATEMENT: Deep learning demonstrates significant promise in autonomously detecting and segmenting pulmonary nodules. Future research should address methodological shortcomings and variability to enhance its clinical utility. KEY POINTS: Deep learning shows potential in the detection and segmentation of pulmonary nodules. There are methodological gaps and biases present in the existing literature. Factors such as external validation and transparency affect the clinical application.

4.
Nanotechnology ; 35(38)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834036

RESUMEN

MXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research. In summary, this paper reviews and summarizes the recent research progress of MXenes from the perspective of preparation processes (including hydrofluoric acid direct etching, fluoride/concentrated acid hybrid etching, fluoride melt etching, electrochemical etching, alkali-assisted etching and Lewis acid etching strategies), which can provide valuable guidance for the preparation and application of high-performance MXenes-based materials.

5.
Sci Total Environ ; 940: 173562, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38825197

RESUMEN

Epidemic and animal studies have reported that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are strongly associated with liver injury; however, to date, the effects of PFASs on the hepatic microenvironment remain largely unknown. In this study, we established perfluorooctane sulfonic acid (PFOS)-induced liver injury models by providing male and female C57BL/6 mice with water containing PFOS at varying doses for 4 weeks. Hematoxylin and eosin staining revealed that PFOS induced liver injury in both sexes. Elevated levels of serum aminotransferases including those of alanine aminotransferase and aspartate transaminase were detected in the serum of mice treated with PFOS. Female mice exhibited more severe liver injury than male mice. We collected the livers from female mice and performed single-cell RNA sequencing. In total, 36,529 cells were included and grouped into 10 major cell types: B cells, granulocytes, T cells, NK cells, monocytes, dendritic cells, macrophages, endothelial cells, fibroblasts, and hepatocytes. Osteoclast differentiation was upregulated and the T cell receptor signaling pathway was significantly downregulated in PFOS-treated livers. Further analyses revealed that among immune cell clusters in PFOS-treated livers, Tcf7+CD4+T cells were predominantly downregulated, whereas conventional dendritic cells and macrophages were upregulated. Among the fibroblast subpopulations, hepatic stellate cells were significantly enriched in PFOS-treated female mice. CellphoneDB analysis suggested that fibroblasts interact closely with endothelial cells. The major ligand-receptor pairs between fibroblasts and endothelial cells in PFOS-treated livers were Dpp4_Cxcl12, Ackr3_Cxcl12, and Flt1_complex_Vegfa. These genes are associated with directing cell migration and angiogenesis. Our study provides a general framework for understanding the microenvironment in the livers of female mice exposed to PFOS at the single-cell level.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Ratones Endogámicos C57BL , Animales , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Femenino , Ratones , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Transcriptoma/efectos de los fármacos , Hígado/efectos de los fármacos , Análisis de la Célula Individual , Contaminantes Ambientales/toxicidad
7.
J Med Internet Res ; 26: e54095, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801765

RESUMEN

BACKGROUND: In recent epochs, the field of critical medicine has experienced significant advancements due to the integration of artificial intelligence (AI). Specifically, AI robots have evolved from theoretical concepts to being actively implemented in clinical trials and applications. The intensive care unit (ICU), known for its reliance on a vast amount of medical information, presents a promising avenue for the deployment of robotic AI, anticipated to bring substantial improvements to patient care. OBJECTIVE: This review aims to comprehensively summarize the current state of AI robots in the field of critical care by searching for previous studies, developments, and applications of AI robots related to ICU wards. In addition, it seeks to address the ethical challenges arising from their use, including concerns related to safety, patient privacy, responsibility delineation, and cost-benefit analysis. METHODS: Following the scoping review framework proposed by Arksey and O'Malley and the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a scoping review to delineate the breadth of research in this field of AI robots in ICU and reported the findings. The literature search was carried out on May 1, 2023, across 3 databases: PubMed, Embase, and the IEEE Xplore Digital Library. Eligible publications were initially screened based on their titles and abstracts. Publications that passed the preliminary screening underwent a comprehensive review. Various research characteristics were extracted, summarized, and analyzed from the final publications. RESULTS: Of the 5908 publications screened, 77 (1.3%) underwent a full review. These studies collectively spanned 21 ICU robotics projects, encompassing their system development and testing, clinical trials, and approval processes. Upon an expert-reviewed classification framework, these were categorized into 5 main types: therapeutic assistance robots, nursing assistance robots, rehabilitation assistance robots, telepresence robots, and logistics and disinfection robots. Most of these are already widely deployed and commercialized in ICUs, although a select few remain under testing. All robotic systems and tools are engineered to deliver more personalized, convenient, and intelligent medical services to patients in the ICU, concurrently aiming to reduce the substantial workload on ICU medical staff and promote therapeutic and care procedures. This review further explored the prevailing challenges, particularly focusing on ethical and safety concerns, proposing viable solutions or methodologies, and illustrating the prospective capabilities and potential of AI-driven robotic technologies in the ICU environment. Ultimately, we foresee a pivotal role for robots in a future scenario of a fully automated continuum from admission to discharge within the ICU. CONCLUSIONS: This review highlights the potential of AI robots to transform ICU care by improving patient treatment, support, and rehabilitation processes. However, it also recognizes the ethical complexities and operational challenges that come with their implementation, offering possible solutions for future development and optimization.


Asunto(s)
Inteligencia Artificial , Cuidados Críticos , Robótica , Robótica/métodos , Humanos , Cuidados Críticos/métodos , Unidades de Cuidados Intensivos
8.
Plant Sci ; 344: 112084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614360

RESUMEN

Mulberry (Morus alba L.) is a climacteric and highly perishable fruit. Ethylene has been considered to be an important trigger of fruit ripening process. However, the role of ethylene in the mulberry fruit ripening process remains unclear. In this study, we performed a comprehensive analysis of metabolomic and transcriptomic data of mulberry fruit and the physiological changes accompanying the fruit ripening process. Our study revealed that changes in the accumulation of specific metabolites at different stages of fruit development and ripening were closely correlated to transcriptional changes as well as underlying physiological changes and the development of taste biomolecules. The ripening of mulberry fruits was highly associated with the production of endogenous ethylene, and further application of exogenous ethylene assisted the ripening process. Transcriptomic analysis revealed that differential expression of diverse ripening-related genes was involved in sugar metabolism, anthocyanin biosynthesis, and cell wall modification pathways. Network analysis of transcriptomics and metabolomics data revealed that many transcription factors and ripening-related genes were involved, among which ethylene-responsive transcription factor 3 (MaERF3) plays a crucial role in the ripening process. The role of MaERF3 in ripening was experimentally proven in a transient overexpression assay in apples. Our study indicates that ethylene plays a vital role in modulating mulberry fruit ripening. The results provide a basis for guiding the genetic manipulation of mulberry fruits towards sustainable agricultural practices and improve post-harvest management, potentially enhancing the quality and shelf life of mulberry fruits for sustainable agriculture and forestry.


Asunto(s)
Etilenos , Frutas , Morus , Transcriptoma , Etilenos/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Morus/genética , Morus/metabolismo , Morus/fisiología , Morus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metabolómica , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
9.
Respir Res ; 25(1): 110, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431661

RESUMEN

Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Peroxiredoxina III , Humanos , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Peroxiredoxina III/metabolismo , Sepsis/metabolismo , Animales , Ratones
10.
BMC Neurol ; 24(1): 70, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373967

RESUMEN

BACKGROUND: Identification of the causes of stroke of undetermined etiology, specifically cardioembolism (CE) and non-CE causes, can inform treatment planning and prognosis prediction. The objective of this study was to analyze the disparities in thrombus composition, particularly Semaphorin-7A (Sema7A) and CD163, between patients diagnosed with large-artery atherosclerosis (LAA) and those with CE, and to investigate their potential association with prognosis. METHODS: Thrombi were collected from patients who underwent mechanical thrombectomy at two hospitals. The patients were categorized into two groups: LAA and CE. We compared the levels of Sema7A and CD163 between these groups and analyzed their relationships with stroke severity, hemorrhagic transformation and prognosis. RESULTS: The study involved a total of 67 patients. Sema7A expression was found to be significantly higher in the CE group compared to LAA (p < 0.001). Conversely, no statistically significant differences were observed for CD163 between the groups. The presence of Sema7A/CD163 did not show any associations with stroke severity or hemorrhagic transformation (all p > 0.05). However, both Sema7A (OR, 2.017; 95% CI, 1.301-3.518; p = 0.005) and CD163 (OR, 2.283; 95% CI, 1.252-5.724; p = 0.03) were associated with the poor prognosis for stroke, after adjusting for stroke severity. CONCLUSION: This study highlights that CE thrombi exhibited higher levels of Sema7A expression compared to LAA thrombi. Moreover, we found a positive correlation between Sema7A/CD163 levels and the poor prognosis of patients with acute ischemic stroke.


Asunto(s)
Aterosclerosis , Accidente Cerebrovascular Isquémico , Semaforinas , Accidente Cerebrovascular , Humanos , Aterosclerosis/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Macrófagos , Accidente Cerebrovascular/etiología , Antígenos CD
11.
IEEE Trans Cybern ; 54(5): 3065-3078, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37018686

RESUMEN

Synthetic aperture radar (SAR) is capable of obtaining the high-resolution 2-D image of the interested target scene, which enables advanced remote sensing and military applications, such as missile terminal guidance. In this article, the terminal trajectory planning for SAR imaging guidance is first investigated. It is found that the guidance performance of an attack platform is determined by the adopted terminal trajectory. Therefore, the aim of the terminal trajectory planning is to generate a set of feasible flight paths to guide the attack platform toward the target and meanwhile obtain the optimized SAR imaging performance for enhanced guidance precision. The trajectory planning is then modeled as a constrained multiobjective optimization problem given a high-dimensional search space, where the trajectory control and SAR imaging performance are comprehensively considered. By utilizing the temporal-order-dependent property of the trajectory planning problem, a chronological iterative search framework (CISF) is proposed. The problem is decomposed into a series of subproblems, where the search space, objective functions, and constraints are reformulated in chronological order. The difficulty of solving the trajectory planning problem is thus significantly alleviated. Then, the search strategy of CISF is devised to solve the subproblems successively. The optimization results of the preceding subproblem can be utilized as the initial input of the subsequent subproblems to enhance the convergence and search performance. Finally, a trajectory planning method is put forward based on CISF. Experimental studies demonstrate the effectiveness and superiority of the proposed CISF compared with the state-of-the-art multiobjective evolutionary methods. The proposed trajectory planning method can generate a set of feasible terminal trajectories with optimized mission performance.

12.
Lancet ; 403(10424): 379-390, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38109916

RESUMEN

BACKGROUND: Excess aldosterone accelerates chronic kidney disease progression. This phase 2 clinical trial assessed BI 690517, an aldosterone synthase inhibitor, for efficacy, safety, and dose selection. METHODS: This was a multinational, randomised, controlled, phase 2 trial. People aged 18 years or older with an estimated glomerular filtration rate (eGFR) of 30 to less than 90 mL/min/1·73 m2, a urine albumin to creatinine ratio (UACR) of 200 to less than 5000 mg/g, and serum potassium of 4·8 mmol/L or less, taking an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, were enrolled. Participants were randomly assigned (1:1) to 8 weeks of empagliflozin or placebo run-in, followed by a second randomisation (1:1:1:1) to 14 weeks of treatment with once per day BI 690517 at doses of 3 mg, 10 mg, or 20 mg, or placebo. Study participants, research coordinators, investigators, and the data coordinating centre were masked to treatment assignment. The primary endpoint was the change in UACR measured in first morning void urine from baseline (second randomisation) to the end of treatment. This study is registered with ClinicalTrials.gov (NCT05182840) and is completed. FINDINGS: Between Feb 18 and Dec 30, 2022, of the 714 run-in participants, 586 were randomly assigned to receive BI 690517 or placebo. At baseline, 33% (n=196) were women, 67% (n=390) were men, 42% (n=244) had a racial identity other than White, and mean participant age was 63·8 years (SD 11·3). Mean baseline eGFR was 51·9 mL/min/1·73 m2 (17·7) and median UACR was 426 mg/g (IQR 205 to 889). Percentage change in first morning void UACR from baseline to the end of treatment at week 14 was -3% (95% CI -19 to 17) with placebo, -22% (-36 to -7) with BI 690517 3 mg, -39% (-50 to -26) with BI 690517 10 mg, and -37% (-49 to -22) with BI 690517 20 mg monotherapy. BI 690517 produced similar UACR reductions when added to empagliflozin. Investigator-reported hyperkalaemia occurred in 10% (14/146) of those in the BI 690517 3 mg group, 15% (22/144) in the BI 690517 10 mg group, and 18% (26/146) in the BI 690517 20 mg group, and in 6% (nine of 147) of those receiving placebo, with or without empagliflozin. Most participants with hyperkalaemia did not require intervention (86% [72/84]). Adrenal insufficiency was an adverse event of special interest reported in seven of 436 study participants (2%) receiving BI 690517 and one of 147 participants (1%) receiving matched placebo. No treatment-related deaths occurred during the study. INTERPRETATION: BI 690517 dose-dependently reduced albuminuria with concurrent renin-angiotensin system inhibition and empagliflozin, suggesting an additive efficacy for chronic kidney disease treatment without unexpected safety signals. FUNDING: Boehringer Ingelheim.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Hiperpotasemia , Insuficiencia Renal Crónica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos de Bencidrilo/administración & dosificación , Compuestos de Bencidrilo/efectos adversos , Compuestos de Bencidrilo/uso terapéutico , Citocromo P-450 CYP11B2 , Método Doble Ciego , Glucósidos/administración & dosificación , Glucósidos/efectos adversos , Glucósidos/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/administración & dosificación , Antagonistas de Receptores de Mineralocorticoides/efectos adversos , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Resultado del Tratamiento
13.
RSC Adv ; 13(30): 20512-20519, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435366

RESUMEN

Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 µm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.

14.
Front Aging Neurosci ; 15: 1174541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293664

RESUMEN

Background and purpose: The prevalence of cerebral small vessel disease (CSVD) is increasing due to the accelerating global aging process, resulting in a substantial burden on all countries, as cognitive dysfunction associated with CSVD is also on the rise. Clock genes have a significant impact on cognitive decline and dementia. Furthermore, the pattern of DNA methylation in clock genes is strongly associated with cognitive impairment. Thus, the aim of this study was to explore the connection between DNA promoter methylation of PER1 and CRY1 and cognitive dysfunction in patients with CSVD. Methods: We recruited patients with CSVD admitted to the Geriatrics Department of the Lianyungang Second People's Hospital between March 2021 and June 2022. Based on their Mini-Mental State Examination score, patients were categorized into two groups: 65 cases with cognitive dysfunction and 36 cases with normal cognitive function. Clinical data, 24-h ambulatory blood pressure monitoring parameters, and CSVD total load scores were collected. Moreover, we employed methylation-specific PCR to analyze the peripheral blood promoter methylation levels of clock genes PER1 and CRY1 in all CSVD patients who were enrolled. Finally, we used binary logistic regression models to assess the association between the promoter methylation of clock genes (PER1 and CRY1) and cognitive dysfunction in patients with CSVD. Results: (1) A total of 101 individuals with CSVD were included in this study. There were no statistical differences between the two groups in baseline clinical data except MMSE and AD8 scores. (2) After B/H correction, the promoter methylation rate of PER1 was higher in the cognitive dysfunction group than that in the normal group, and the difference was statistically significant (adjusted p < 0.001). (3) There was no significant correlation between the promoter methylation rates of PER1 and CRY1 in peripheral blood and circadian rhythm of blood pressure (p > 0.05). (4) Binary logistic regression models showed that the influence of promoter methylation of PER1 and CRY1 on cognitive dysfunction were statistically significant in Model 1 (p < 0.001; p = 0.025), and it still existed after adjusting for confounding factors in Model 2. Patients with the promoter methylation of PER1 gene (OR = 16.565, 95%CI, 4.057-67.628; p < 0.001) and the promoter methylation of CRY1 gene (OR = 6.017, 95%CI, 1.290-28.069; p = 0.022) were at greater risk of cognitive dysfunction compared with those with unmethylated promoters of corresponding genes in Model 2. Conclusion: The promoter methylation rate of PER1 gene was higher in the cognitive dysfunction group among CSVD patients. And the hypermethylation of the promoters of clock genes PER1 and CRY1 may be involved in affecting cognitive dysfunction in patients with CSVD.

15.
Parasitol Res ; 122(9): 2023-2036, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37349656

RESUMEN

Neospora caninum, an intracellular protozoan parasite, causes neosporosis resulting in major losses in the livestock industry worldwide. However, no effective drugs or vaccines have been developed to control neosporosis. An in-depth study on the immune response against N. caninum could help to search for effective approaches to prevent and treat neosporosis. The host unfolded protein response (UPR) functions as a double-edged sword in several protozoan parasite infections, either to initiate immune responses or to help parasite survival. In this study, the roles of the UPR in N. caninum infection in vitro and in vivo were explored, and the mechanism of the UPR in resistance to N. caninum infection was analyzed. The results revealed that N. caninum triggered the UPR in mouse macrophages, such as the activation of the IRE1 and PERK branches, but not the ATF6 branch. Inhibition of the IRE1α-XBP1s branch increased the N. caninum number both in vitro and in vivo, while inhibition of the PERK branch did not affect the parasite number. Furthermore, inhibition of the IRE1α-XBP1s branch reduced the production of cytokines by inhibiting NOD2 signalling and its downstream NF-κB and MAPK pathways. Taken together, the results of this study suggest that the UPR is involved in the resistance of N. caninum infection via the IRE1α-XBP1s branch by regulating NOD2 and its downstream NF-κB and MAPK pathways to induce the production of inflammatory cytokines, which provides a new perspective for the research and development of anti-N. caninum drugs.


Asunto(s)
Coccidiosis , Neospora , Animales , Ratones , FN-kappa B/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Respuesta de Proteína Desplegada , Coccidiosis/parasitología
16.
Phys Chem Chem Phys ; 25(20): 14598-14605, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37191254

RESUMEN

The removal of acetylene impurities is indispensable in the production of ethylene. An Ag-promoted Pd catalyst is industrially used to remove acetylene impurities by selective hydrogenation. It is highly desirable to replace Pd with non-precious metals. In the present investigation, CuO particles, which are most frequently used as the precursors for Cu-based catalysts, were prepared through the solution-based chemical precipitation method and used to prepare high-performance catalysts for selective hydrogenation of acetylene in large excess ethylene. The non-precious metal catalyst was prepared by treating CuO particles with acetylene-containing gas (0.5 vol% C2H2/Ar) at 120 °C and subsequent hydrogen reduction at 150 °C. The obtained catalyst was tested in selective hydrogenation of acetylene in a large excess of ethylene (0.72 vol% CH4 as the internal standard, 0.45 vol% C2H2, 88.83 vol% C2H4, 10.00 vol% H2). It exhibited significantly higher activity than the counterpart of Cu metals, achieving 100% conversion of acetylene without ethylene loss at 110 °C and atmospheric pressure. The characterization by means of XRD, XPS, TEM, H2-TPR, CO-FTIR, and EPR verified the formation of an interstitial copper carbide (CuxC), which was responsible for the enhanced hydrogenation activity.

17.
J Magn Reson Imaging ; 58(6): 1882-1891, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37118972

RESUMEN

BACKGROUND: The combination of radiomics and diffusion tensor imaging (DTI) may have potential clinical value in the early stage of HIV-associated neurocognitive disorders (HAND). PURPOSE: To investigate the value of DTI-based radiomics in the early stage of HAND in people living with HIV (PLWH). STUDY TYPE: Retrospective. POPULATION: A total of 138 male PLWH were included, including 68 with intact cognition (IC) and 70 with asymptomatic neurocognitive impairment (ANI). Seventy healthy controls (HCs) were recruited for tract-based spatial statistics (TBSS) analysis. All PLWHs were randomly divided into training and validation cohorts at a 7:3 ratio. FIELD STRENGTH/SEQUENCE: A 3 T, single-shot spin-echo echo planar imaging (EPI). ASSESSMENT: The differences between the PLWH groups were compared using TBSS and region of interest (ROI) analysis. Radiomic features were extracted from the corpus callosum (CC) on DTI postprocessed images, including fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). The performance of the radiomic signatures was evaluated by ROC curve analysis. The radiomic signature with the highest area under the curve (AUC) was combined with clinical characteristics to construct a nomogram. Decision curve analysis (DCA) was performed to evaluate the ability of different methods in discriminating ANI. STATISTICAL TESTS: Chi-square test, independent-samples t test, Kruskal-Wallis test, Mann-Whitney U test, threshold-free cluster enhancement (TFCE), ROC curve analysis, DCA, multivariate logistic regression analysis, Hosmer-Lemeshow test. P < 0.05 with TFCE corrected and P < 0.0001 without TFCE corrected were considered statistically significant. RESULTS: The ANI group showed lower FA and higher AD than the IC group. In the validation cohort, the AUCs of the FA-, AD-, MD- and RD-based radiomic signatures and the clinicoradiomic nomogram were 0.829, 0.779, 0.790, 0.864, and 0.874, respectively. DCA revealed that the nomogram was of greater clinical value than TBSS analysis, the clinical models, and the RD-based radiomic signature. DATA CONCLUSION: The combination of DTI and radiomics is correlated with early stage of HAND in PLWH. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Imagen de Difusión Tensora , Infecciones por VIH , Humanos , Masculino , Imagen de Difusión Tensora/métodos , VIH , Estudios Retrospectivos , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/complicaciones , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico por imagen , Diagnóstico Precoz
18.
BMC Med Imaging ; 23(1): 58, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076817

RESUMEN

BACKGROUND: BI-RADS 4 breast lesions are suspicious for malignancy with a range from 2 to 95%, indicating that numerous benign lesions are unnecessarily biopsied. Thus, we aimed to investigate whether high-temporal-resolution dynamic contrast-enhanced MRI (H_DCE-MRI) would be superior to conventional low-temporal-resolution DCE-MRI (L_DCE-MRI) in the diagnosis of BI-RADS 4 breast lesions. METHODS: This single-center study was approved by the IRB. From April 2015 to June 2017, patients with breast lesions were prospectively included and randomly assigned to undergo either H_DCE-MRI, including 27 phases, or L_DCE-MRI, including 7 phases. Patients with BI-RADS 4 lesions were diagnosed by the senior radiologist in this study. Using a two-compartment extended Tofts model and a three-dimensional volume of interest, several pharmacokinetic parameters reflecting hemodynamics, including Ktrans, Kep, Ve, and Vp, were obtained from the intralesional, perilesional and background parenchymal enhancement areas, which were labeled the Lesion, Peri and BPE areas, respectively. Models were developed based on hemodynamic parameters, and the performance of these models in discriminating between benign and malignant lesions was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 140 patients were included in the study and underwent H_DCE-MRI (n = 62) or L_DCE-MRI (n = 78) scans; 56 of these 140 patients had BI-RADS 4 lesions. Some pharmacokinetic parameters from H_DCE-MRI (Lesion_Ktrans, Kep, and Vp; Peri_Ktrans, Kep, and Vp) and from L_DCE-MRI (Lesion_Kep, Peri_Vp, BPE_Ktrans and BPE_Vp) were significantly different between benign and malignant breast lesions (P < 0.01). ROC analysis showed that Lesion_Ktrans (AUC = 0.866), Lesion_Kep (AUC = 0.929), Lesion_Vp (AUC = 0.872), Peri_Ktrans (AUC = 0.733), Peri_Kep (AUC = 0.810), and Peri_Vp (AUC = 0.857) in the H_DCE-MRI group had good discrimination performance. Parameters from the BPE area showed no differentiating ability in the H_DCE-MRI group. Lesion_Kep (AUC = 0.767), Peri_Vp (AUC = 0.726), and BPE_Ktrans and BPE_Vp (AUC = 0.687 and 0.707) could differentiate between benign and malignant breast lesions in the L_DCE-MRI group. The models were compared with the senior radiologist's assessment for the identification of BI-RADS 4 breast lesions. The AUC, sensitivity and specificity of Lesion_Kep (0.963, 100.0%, and 88.9%, respectively) in the H_DCE-MRI group were significantly higher than those of the same parameter in the L_DCE-MRI group (0.663, 69.6% and 75.0%, respectively) for the assessment of BI-RADS 4 breast lesions. The DeLong test was conducted, and there was a significant difference only between Lesion_Kep in the H_DCE-MRI group and the senior radiologist (P = 0.04). CONCLUSIONS: Pharmacokinetic parameters (Ktrans, Kep and Vp) from the intralesional and perilesional regions on high-temporal-resolution DCE-MRI, especially the intralesional Kep parameter, can improve the assessment of benign and malignant BI-RADS 4 breast lesions to avoid unnecessary biopsy.


Asunto(s)
Neoplasias de la Mama , Medios de Contraste , Femenino , Humanos , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Curva ROC , Sensibilidad y Especificidad
19.
Cell Death Dis ; 14(2): 83, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739418

RESUMEN

SEMA6A is a multifunctional transmembrane semaphorin protein that participates in various cellular processes, including axon guidance, cell migration, and cancer progression. However, the role of SEMA6A in clear cell renal cell carcinoma (ccRCC) is unclear. Based on high-throughput sequencing data, here we report that SEMA6A is a novel target gene of the VHL-HIF-2α axis and overexpressed in ccRCC. Chromatin immunoprecipitation and reporter assays revealed that HIF-2α directly activated SEMA6A transcription in hypoxic ccRCC cells. Wnt/ß-catenin pathway activation is correlated with the expression of SEMA6A in ccRCC; the latter physically interacted with SEC62 and promoted ccRCC progression through SEC62-dependent ß-catenin stabilization and activation. Depletion of SEMA6A impaired HIF-2α-induced Wnt/ß-catenin pathway activation and led to defective ccRCC cell proliferation both in vitro and in vivo. SEMA6A overexpression promoted the malignant phenotypes of ccRCC, which was reversed by SEC62 depletion. Collectively, this study revealed a potential role for VHL-HIF-2α-SEMA6A-SEC62 axis in the activation of Wnt/ß-catenin pathway. Thus, SEMA6A may act as a potential therapeutic target, especially in VHL-deficient ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Semaforinas , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
20.
IEEE Trans Cybern ; 53(5): 3190-3204, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35275832

RESUMEN

Highly constrained multiobjective optimization problems (HCMOPs) refer to constrained multiobjective optimization problems (CMOPs) with complex constraints and small feasible regions, which are commonly encountered in many real-world applications. Current constraint-handling techniques will face two difficulties when dealing with HCMOPs: 1) feasible solution is hard to be found and too much search effort is spent in locating the feasible region and 2) since the total feasible region of an HCMOP can consist of several disconnected subregions, the search process might be stuck in the comparatively larger feasible subregion, which does not contain the whole Pareto front (PF). To address these two issues, an evolutionary algorithm with constraint relaxation strategy based on differential evolution algorithm, that is, CRS-DE, is proposed in this article. In each generation, the CRS-DE relaxes the constraints by dividing the infeasible solutions into two subpopulations based on total constraint violation, that is, the "semifeasible" subpopulation (SF) and "infeasible" subpopulation (IF), respectively. The SF provides information on the promising regions of finding the feasible solution and is the driving force for convergence toward the PF, while the IF focuses on global exploration for new promising regions. Corresponding reproduction and selection strategies are devised for the SF, IF, and feasible subpopulations, which create a clear division of labor with cooperation to facilitate the search for feasible solutions. To leverage the influence of CRS and prevent the population from premature convergence, a mobility restriction mechanism is developed to restrict the individuals in the SF and IF from entering the feasible subpopulation and enhance the diversity of the whole population. Comprehensive experiments on a series of benchmark test problems and a real-world CMOP demonstrate the competitiveness of our method compared with other representative algorithms in terms of effectiveness and reliability in finding a set of well-distributed optimal solutions for HCMOPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA