Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Microbiol ; 26(7): e16670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952172

RESUMEN

The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.


Asunto(s)
Bacteriófagos , ADN de Cadena Simple , Flavobacterium , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Flavobacterium/virología , Flavobacterium/crecimiento & desarrollo , Flavobacterium/genética , Interacciones Microbiota-Huesped , Endopeptidasas/metabolismo , Endopeptidasas/genética , Replicación Viral , Temperatura
2.
Microbiol Spectr ; : e0352023, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912817

RESUMEN

Pseudomonas aeruginosa infections are getting increasingly serious as antimicrobial resistance spreads. Phage therapy may be a solution to the problem, especially if improved by current advances on phage-host studies. As a mucosal pathogen, we hypothesize that P. aeruginosa and its phages are linked to the bacteriophage adherence to mucus (BAM) model. This means that phage-host interactions could be influenced by mucin presence, impacting the success of phage infections on the P. aeruginosa host and consequently leading to the protection of the metazoan host. By using a group of four different phages, we tested three important phenotypes associated with the BAM model: phage binding to mucin, phage growth in mucin-exposed hosts, and the influence of mucin on CRISPR immunity of the bacterium. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. Improved phage growth was likely the result of phage exploitation of mucin-induced physiological changes in the host. We could not detect CRISPR activity in our system but identified two putative anti-CRISPR proteins coded by the phage. Overall, the differential responses seen for the phages tested show that the same bacterial species can be targeted by mucosal-associated phages or by phages not affected by mucus presence. In conclusion, the BAM model is relevant for phage-bacterium interactions in P. aeruginosa, opening new possibilities to improve phage therapy against this important pathogen by considering mucosal interaction dynamics.IMPORTANCESome bacteriophages are involved in a symbiotic relationship with animals, in which phages held in mucosal surfaces protect them from invading bacteria. Pseudomonas aeruginosa is one of the many bacterial pathogens threatening humankind during the current antimicrobial resistance crisis. Here, we have tested whether P. aeruginosa and its phages are affected by mucosal conditions. We discovered by using a collection of four phages that, indeed, mucosal interaction dynamics can be seen in this model. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. These results link P. aeruginosa and its phages to the bacteriophage adherence to the mucus model and open opportunities to explore this to improve phage therapy, be it by exploiting the phenotypes detected or by actively selecting mucosal-adapted phages for treatment.

3.
Mol Ecol ; 32(15): 4447-4460, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303030

RESUMEN

Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Coinfección , Farmacorresistencia Microbiana , Peces , Coinfección/microbiología , Peces/microbiología , Peces/parasitología , Animales
4.
Nat Commun ; 13(1): 7478, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463224

RESUMEN

The origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses with a major capsid protein composed of two upright ß-sandwiches. The minimalistic structure of ΦCjT23 suggests that this phage serves as a model for the last common ancestor between ssDNA and dsDNA viruses in the Bamfordvirae. Both ΦCjT23 and the related phage FLiP infect Flavobacterium species found in several environments, suggesting that these types of viruses have a global distribution and a shared evolutionary origin. Detailed comparisons to related, more complex viruses not only expand our knowledge about this group of viruses but also provide a rare glimpse into early virus evolution.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , ADN de Cadena Simple/genética , Flavobacterium/genética
5.
Nat Commun ; 13(1): 3653, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752617

RESUMEN

Parasitism by bacteriophages has led to the evolution of a variety of defense mechanisms in their host bacteria. However, it is unclear what factors lead to specific defenses being deployed upon phage infection. To explore this question, we co-evolved the bacterial fish pathogen Flavobacterium columnare and its virulent phage V156 in presence and absence of a eukaryotic host signal (mucin) for sixteen weeks. The presence of mucin leads to a dramatic increase in CRISPR spacer acquisition, especially in low nutrient conditions where over 60% of colonies obtain at least one new spacer. Additionally, we show that the presence of a competitor bacterium further increases CRISPR spacer acquisition in F. columnare. These results suggest that ecological factors are important in determining defense strategies against phages, and that the phage-bacterium interactions on mucosal surfaces may select for the diversification of bacterial immune systems.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Animales , Bacteriófagos/genética , Peces , Mucinas
6.
Evol Appl ; 15(3): 417-428, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35386393

RESUMEN

Phenotypic variation is suggested to facilitate the persistence of environmentally growing pathogens under environmental change. Here, we hypothesized that the intensive farming environment induces higher phenotypic variation in microbial pathogens than natural environment, because of high stochasticity for growth and stronger survival selection compared to the natural environment. We tested the hypothesis with an opportunistic fish pathogen Flavobacterium columnare isolated either from fish farms or from natural waters. We measured growth parameters of two morphotypes from all isolates in different resource concentrations and two temperatures relevant for the occurrence of disease epidemics at farms and tested their virulence using a zebrafish (Danio rerio) infection model. According to our hypothesis, isolates originating from the fish farms had higher phenotypic variation in growth between the morphotypes than the isolates from natural waters. The difference was more pronounced in higher resource concentrations and the higher temperature, suggesting that phenotypic variation is driven by the exploitation of increased outside-host resources at farms. Phenotypic variation of virulence was not observed based on isolate origin but only based on morphotype. However, when in contact with the larger fish, the less virulent morphotype of some of the isolates also had high virulence. As the less virulent morphotype also had higher growth rate in outside-host resources, the results suggest that both morphotypes can contribute to F. columnare epidemics at fish farms, especially with current prospects of warming temperatures. Our results suggest that higher phenotypic variation per se does not lead to higher virulence, but that environmental conditions at fish farms could select isolates with high phenotypic variation in bacterial population and hence affect evolution in F. columnare at fish farms. Our results highlight the multifaceted effects of human-induced environmental alterations in shaping epidemiology and evolution in microbial pathogens.

7.
Environ Microbiol ; 24(5): 2404-2420, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049114

RESUMEN

Intensive aquaculture conditions expose fish to bacterial infections, leading to significant financial losses, extensive antibiotic use and risk of antibiotic resistance in target bacteria. Flavobacterium columnare causes columnaris disease in aquaculture worldwide. To develop a bacteriophage-based control of columnaris disease, we isolated and characterized 126 F. columnare strains and 63 phages against F. columnare from Finland and Sweden in 2017. Bacterial isolates were virulent on rainbow trout (Oncorhynchus mykiss) and fell into four previously described genetic groups A, C, E and G, with genetic groups C and E being the most virulent. Phage host range studied against a collection of 227 bacterial isolates (from 2013 to 2017) demonstrated modular infection patterns based on host genetic group. Phages infected contemporary and previously isolated bacterial hosts, but bacteria isolated most recently were generally resistant to previously isolated phages. Despite large differences in geographical origin, isolation year or host range of the phages, whole-genome sequencing of 56 phages showed high level of genetic similarity to previously isolated F. columnare phages (Ficleduovirus, Myoviridae). Altogether, this phage collection demonstrates a potential for use in phage therapy.


Asunto(s)
Bacteriófagos , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Oncorhynchus mykiss , Animales , Acuicultura , Bacteriófagos/genética , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/genética , Oncorhynchus mykiss/microbiología , Prevalencia
8.
Phage (New Rochelle) ; 3(3): 128-135, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36793554

RESUMEN

Pathogenic bacteria are attracted toward mucosa, as it is their way of entry into the body. However, we know surprisingly little about the phage-bacterium interactions in the mucosal environment. Here, we explored the effect of the mucosal environment on growth characteristics and phage-bacterium interactions in Streptococcus mutans, a causative agent of dental caries. We found that although mucin supplementation increased bacterial growth and survival, it decreased S. mutans biofilm formation. More importantly, the presence of mucin had a significant effect on S. mutans phage susceptibility. In two experiments done in Brain Heart Infusion Broth, phage M102 replication was detected only with 0.2% mucin supplementation. In 0.1 × Tryptic Soy Broth, 0.5% mucin supplementation led to a 4-log increase in phage titers compared with the control. These results suggest that the mucosal environment can have a major role in the growth, phage sensitivity, and phage resistance of S. mutans, and underline the importance of understanding the effect of mucosal environment on phage-bacterium interactions.

9.
Antibiotics (Basel) ; 10(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34438964

RESUMEN

Viruses of bacteria, bacteriophages, specifically infect their bacterial hosts with minimal effects on the surrounding microbiota. They have the potential to be used in the prevention and treatment of bacterial infections, including in the field of food production. In aquaculture settings, disease-causing bacteria are often transmitted through the water body, providing several applications for phage-based targeting of pathogens, in the rearing environment, and in the fish. We tested delivery of phages by different methods (via baths, in phage-coated material, and via oral delivery in feed) to prevent and treat Flavobacterium columnare infections in rainbow trout fry using three phages (FCOV-S1, FCOV-F2, and FCL-2) and their hosts (FCO-S1, FCO-F2, and B185, respectively). Bath treatments given before bacterial infection and at the onset of the disease symptoms were the most efficient way to prevent F. columnare infections in rainbow trout, possibly due to the external nature of the disease. In a flow-through system, the presence of phage-coated plastic sheets delayed the onset of the disease. The oral administration of phages first increased disease progression, although total mortality was lower at the end of the experiment. When analysed for shelf-life, phage titers remained highest when maintained in bacterial culture media and in sterile lake water. Our results show that successful phage therapy treatment in the aquaculture setting requires optimisation of phage delivery methods in vivo.

10.
Appl Environ Microbiol ; 87(16): e0081221, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34106011

RESUMEN

Increasing problems with antibiotic resistance have directed interest toward phage therapy in the aquaculture industry. However, phage resistance evolving in target bacteria is considered a challenge. To investigate how phage resistance influences the fish pathogen Flavobacterium columnare, two wild-type bacterial isolates, FCO-F2 and FCO-F9, were exposed to phages (FCO-F2 to FCOV-F2, FCOV-F5, and FCOV-F25, and FCO-F9 to FCL-2, FCOV-F13, and FCOV-F45), and resulting phenotypic and genetic changes in bacteria were analyzed. Bacterial viability first decreased in the exposure cultures but started to increase after 1 to 2 days, along with a change in colony morphology from original rhizoid to rough, leading to 98% prevalence of the rough morphotype. Twenty-four isolates (including four isolates from no-phage treatments) were further characterized for phage resistance, antibiotic susceptibility, motility, adhesion, and biofilm formation, protease activity, whole-genome sequencing, and virulence in rainbow trout fry. The rough isolates arising in phage exposure were phage resistant with low virulence, whereas rhizoid isolates maintained phage susceptibility and high virulence. Gliding motility and protease activity were also related to the phage susceptibility. Observed mutations in phage-resistant isolates were mostly located in genes encoding the type IX secretion system, a component of the Bacteroidetes gliding motility machinery. However, not all phage-resistant isolates had mutations, indicating that phage resistance in F. columnare is a multifactorial process, including both genetic mutations and changes in gene expression. Phage resistance may not, however, be a challenge for development of phage therapy against F. columnare infections since phage resistance is associated with decreases in bacterial virulence. IMPORTANCE Phage resistance of infectious bacteria is a common phenomenon posing challenges for the development of phage therapy. Along with a growing world population and the need for increased food production, constantly intensifying animal farming has to face increasing problems of infectious diseases. Columnaris disease, caused by Flavobacterium columnare, is a worldwide threat for salmonid fry and juvenile farming. Without antibiotic treatments, infections can lead to 100% mortality in a fish stock. Phage therapy of columnaris disease would reduce the development of antibiotic-resistant bacteria and antibiotic loads by the aquaculture industry, but phage-resistant bacterial isolates may become a risk. However, phenotypic and genetic characterization of phage-resistant F. columnare isolates in this study revealed that they are less virulent than phage-susceptible isolates and thus not a challenge for phage therapy against columnaris disease. This is valuable information for the fish farming industry globally when considering phage-based prevention and curing methods for F. columnare infections.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Bacteriófagos/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/citología , Flavobacterium/patogenicidad , Flavobacterium/virología , Animales , Proteínas Bacterianas/inmunología , Sistemas de Secreción Bacterianos/inmunología , Bacteriófagos/genética , Peces , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/inmunología , Mutación , Virulencia
11.
Microorganisms ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946270

RESUMEN

The microbial community surrounding fish eyed eggs can harbor pathogenic bacteria. In this study we focused on rainbow trout (Oncorhynchus mykiss) eyed eggs and the potential of bacteriophages against the pathogenic bacteria Flavobacterium psychrophilum and F. columnare. An infection bath method was first established, and the effects of singular phages on fish eggs was assessed (survival of eyed eggs, interaction of phages with eyed eggs). Subsequently, bacteria-challenged eyed eggs were exposed to phages to evaluate their effects in controlling the bacterial population. Culture-based methods were used to enumerate the number of bacteria and/or phages associated with eyed eggs and in the surrounding environment. The results of the study showed that, with our infection model, it was possible to re-isolate F. psychrophilum associated with eyed eggs after the infection procedure, without affecting the survival of the eggs in the short term. However, this was not possible for F. columnare, as this bacterium grows at higher temperatures than the ones recommended for incubation of rainbow trout eyed eggs. Bacteriophages do not appear to negatively affect the survival of rainbow trout eyed eggs and they do not seem to strongly adhere to the surface of eyed eggs either. Finally, the results demonstrated a strong potential for short term (24 h) phage control of F. psychrophilum. However, further studies are needed to explore if phage control can be maintained for a longer period and to further elucidate the mechanisms of interactions between Flavobacteria and their phages in association with fish eggs.

12.
Antibiotics (Basel) ; 10(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810018

RESUMEN

Environmental heterogeneity is a central component influencing the virulence and epidemiology of infectious diseases. The number and distribution of susceptible hosts determines disease transmission opportunities, shifting the epidemiological threshold between the spread and fadeout of a disease. Similarly, the presence and diversity of other hosts, pathogens and environmental microbes, may inhibit or accelerate an epidemic. This has important applied implications in farming environments, where high numbers of susceptible hosts are maintained in conditions of minimal environmental heterogeneity. We investigated how the quantity and quality of aquaculture enrichments (few vs. many stones; clean stones vs. stones conditioned in lake water) influenced the severity of infection of a pathogenic bacterium, Flavobacterium columnare, in salmonid fishes. We found that the conditioning of the stones significantly increased host survival in rearing tanks with few stones. A similar effect of increased host survival was also observed with a higher number of unconditioned stones. These results suggest that a simple increase in the heterogeneity of aquaculture environment can significantly reduce the impact of diseases, most likely operating through a reduction in pathogen transmission (stone quantity) and the formation of beneficial microbial communities (stone quality). This supports enriched rearing as an ecological and economic way to prevent bacterial infections with the minimal use of antimicrobials.

13.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785624

RESUMEN

CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.IMPORTANCE CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader's genome. These fragments, called spacers, are integrated into a memory bank on the bacterial genome called the CRISPR array. The spacers allow for the recognition of the same invader upon subsequent infection. Most CRISPR-Cas systems target DNA, but recently, systems that exclusively target RNA have been discovered. RNA-targeting CRISPR-Cas systems often lack genes necessary for spacer acquisition, and it is thus unknown how new spacers are acquired and if they can be acquired from DNA phages. Here, we show that an RNA-targeting system "borrows" acquisition machinery from another CRISPR-Cas locus in the genome. Most new spacers in this locus are unable to target phage mRNA and are therefore likely redundant. Our results reveal collaboration between distinct CRISPR-Cas types and raise further questions on how other CRISPR-Cas loci may cooperate.


Asunto(s)
Bacteriófagos/genética , Sistemas CRISPR-Cas , Flavobacterium/genética , Flavobacterium/virología , ARN Viral/metabolismo , Adaptación Fisiológica , Bacteriófagos/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Flavobacterium/fisiología , Genoma Bacteriano , ARN Viral/genética
14.
Microorganisms ; 8(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276599

RESUMEN

The role of prophages in the evolution, diversification, or virulence of the fish pathogen Flavobacterium columnare has not been studied thus far. Here, we describe a functional spontaneously inducing prophage fF4 from the F. columnare type strain ATCC 23463, which is not detectable with commonly used prophage search methods. We show that this prophage type has a global distribution and is present in strains isolated from Finland, Thailand, Japan, and North America. The virions of fF4 are myoviruses with contractile tails and infect only bacterial strains originating from Northern Finland. The fF4 resembles transposable phages by similar genome organization and several gene orthologs. Additional bioinformatic analyses reveal several species in the phylum Bacteroidetes that host a similar type of putative prophage, including bacteria that are important animal and human pathogens. Furthermore, a survey of F. columnare Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers indicate a shared evolutionary history between F. columnare strains and the fF4 phage, and another putative prophage in the F. columnare strain ATCC 49512, named p49512. First, CRISPR spacer content from the two CRISPR loci (types II-C and VI-B) of the fF4 lysogen F. columnare ATCC 23463 revealed a phage terminase protein-matching spacer in the VI-B locus. This spacer is also present in two Chinese F. columnare strains. Second, CRISPR analysis revealed four F. columnare strains that contain unique spacers targeting different regions of the putative prophage p49512 in the F. columnare strain ATCC 49512, despite the geographical distance or genomovar of the different strains. This suggests a common ancestry for the F. columnare prophages and different host strains.

15.
J Gen Virol ; 101(9): 894-895, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32840474

RESUMEN

Finnlakeviridae is a family of icosahedral, internal membrane-containing bacterial viruses with circular, single-stranded DNA genomes. The family includes the genus, Finnlakevirus, with the species, Flavobacterium virus FLiP. Flavobacterium phage FLiP was isolated with its Gram-negative host bacterium from a boreal freshwater habitat in Central Finland in 2010. It is the first described single-stranded DNA virus with an internal membrane and shares minimal sequence similarity with other known viruses. The virion organization (pseudo T=21 dextro) and major capsid protein fold (double-ß-barrel) resemble those of Pseudoalteromonas phage PM2 (family Corticoviridae), which has a double-stranded DNA genome. A similar major capsid protein fold is also found in other double-stranded DNA viruses in the kingdom Bamfordvirae. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Finnlakeviridae, which is available at ictv.global/report/finnlakeviridae.


Asunto(s)
Bacteriófagos , Virus ADN , Flavobacterium/virología , Bacteriólisis , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/ultraestructura , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/fisiología , Virus ADN/ultraestructura , ADN de Cadena Simple/genética , ADN Viral/genética , Genoma Viral , Virión/química , Virión/ultraestructura , Replicación Viral
16.
Antibiotics (Basel) ; 9(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486059

RESUMEN

Phage therapy is becoming a widely recognized alternative for fighting pathogenic bacteria due to increasing antibiotic resistance problems. However, one of the common concerns related to the use of phages is the evolution of bacterial resistance against the phages, putatively disabling the treatment. Experimental adaptation of the phage (phage training) to infect a resistant host has been used to combat this problem. Yet, there is very little information on the trade-offs of phage infectivity and host range. Here we co-cultured a myophage FCV-1 with its host, the fish pathogen Flavobacterium columnare, in lake water and monitored the interaction for a one-month period. Phage resistance was detected within one day of co-culture in the majority of the bacterial isolates (16 out of the 18 co-evolved clones). The primary phage resistance mechanism suggests defense via surface modifications, as the phage numbers rose in the first two days of the experiment and remained stable thereafter. However, one bacterial isolate had acquired a spacer in its CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas locus, indicating that also CRISPR-Cas defense was employed in the phage-host interactions. After a week of co-culture, a phage isolate was obtained that was able to infect 18 out of the 32 otherwise resistant clones isolated during the experiment. Phage genome sequencing revealed several mutations in two open reading frames (ORFs) likely to be involved in the regained infectivity of the evolved phage. Their location in the genome suggests that they encode tail genes. Characterization of this evolved phage, however, showed a direct cost for the ability to infect several otherwise resistant clones-adsorption was significantly lower than in the ancestral phage. This work describes a method for adapting the phage to overcome phage resistance in a fish pathogenic system.

17.
Sci Total Environ ; 720: 137580, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32135290

RESUMEN

Active pharmaceutical ingredients, especially antibiotics, are micropollutants whose continuous flow into hydrological cycles has the potential to mediate antibiotic resistance in the environment and cause toxicity to sensitive organisms. Here, we investigated the levels of selected antibiotics in four wastewater treatment plants and the receiving water bodies. The measured environmental concentrations were compared with the proposed compound-specific predicted no-effect concentration for resistance selection values. The concentration of doxycycline, amoxicillin, sulfamethoxazole, trimethoprim, ciprofloxacin and norfloxacin within the influents, effluents, surface waters and river sediments ranged between 0.2 and 49.3 µgL-1, 0.1 to 21.4 µgL-1; ˂ 0.1 and 56.6 µgL-1; and 1.8 and 47.4 µgkg-1, respectively. Compared to the effluent concentrations, the surface waters upstream and downstream one of the four studied treatment plants showed two to five times higher concentrations of ciprofloxacin, norfloxacin and sulfamethoxazole. The risk quotient for bacterial resistance selection in effluent and surface water ranged between ˂0.1 and 53, indicating a medium to high risk of antibiotic resistance developing within the study areas. Therefore, risk mitigation and prevention strategies are a matter of priority in the affected areas.


Asunto(s)
Aguas Residuales , Antibacterianos , Farmacorresistencia Microbiana , Monitoreo del Ambiente , Sedimentos Geológicos , Kenia , Contaminantes Químicos del Agua
18.
Lancet Infect Dis ; 20(5): e90-e101, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213334

RESUMEN

The use of bacteriophages to treat bacterial infections (known as phage therapy) is considered a possible solution to the antimicrobial resistance crisis. However, phage therapy is not a new concept. The discovery of phages in the early 20th century was closely tied to clinical practice, and phage therapy quickly spread around the world. The use of phage therapy in South America in the previous century is still shrouded in mystery and has been mentioned only briefly in recent scientific literature. Research on Brazilian reference collections of medical texts showed that Brazil was an important, but so far little-known, player of phage therapy, uncovering interesting priority claims and missing pieces of phage therapy history. Of note, there is the widespread use of phages against bacillary dysentery and staphylococcal infections, with José da Costa Cruz from the Oswaldo Cruz Institute (Rio de Janeiro, Brazil) as Brazil's leading expert and pioneer. This Historical Review about historical phage use in Brazil fills the gaps in our knowledge about the so-called golden years of phage therapy, providing information about successful experiences that can be useful against dangerous pathogens in our time.


Asunto(s)
Infecciones Bacterianas/terapia , Infecciones Bacterianas/virología , Bacteriófagos/fisiología , Brasil , Humanos , Terapia de Fagos/métodos
19.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806749

RESUMEN

We report a complete genome sequence of a Finnish isolate of the fish pathogen Flavobacterium columnare Using PacBio RS II sequencing technology, the complete circular genome of F. columnare strain B185 with 3,261,404 bp was obtained.

20.
Evol Appl ; 12(10): 1900-1911, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31700534

RESUMEN

Hosts are typically infected with multiple strains or genotypes of one or several parasite species. These infections can take place simultaneously, but also at different times, i.e. sequentially, when one of the parasites establishes first. Sequential parasite dynamics are common in nature, but also in intensive farming units such as aquaculture. However, knowledge of effects of previous exposures on virulence of current infections in intensive farming is very limited. This is critical as consecutive epidemics and infection history of a host could underlie failures in management practices and medical intervention of diseases. Here, we explored effects of timing of multiple infections on virulence in two common aquaculture parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum. We exposed fish hosts first to flukes and then to bacteria in two separate experiments, altering timing between the infections from few hours to several weeks. We found that both short-term and long-term differences in timing of the two infections resulted in significant, genotype-specific decrease in bacterial virulence. Second, we developed a mathematical model, parameterized from our experimental results, to predict the implications of sequential infections for epidemiological progression of the disease, and levels of fish population suppression, in an aquaculture setting. Predictions of the model showed that sequential exposure of hosts can decrease the population-level impact of the bacterial epidemic, primarily through the increased recovery rate of sequentially infected hosts, thereby substantially protecting the population from the detrimental impact of infection. However, these effects depended on bacterial strain-fluke genotype combinations, suggesting the genetic composition of the parasite populations can greatly influence the degree of host suppression. Overall, these results suggest that host infection history can have significant consequences for the impact of infection at host population level, potentially shaping parasite epidemiology, disease dynamics and evolution of virulence in farming environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA