Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biotechnol Biofuels ; 9: 2, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26734072

RESUMEN

BACKGROUND: Lignocellulosic biomass from softwood represents a valuable resource for the production of biofuels and bio-based materials as alternatives to traditional pulp and paper products. Hemicelluloses constitute an extremely heterogeneous fraction of the plant cell wall, as their molecular structures involve multiple monosaccharide components, glycosidic linkages, and decoration patterns. The complete enzymatic hydrolysis of wood hemicelluloses into monosaccharides is therefore a complex biochemical process that requires the activities of multiple degradative enzymes with complementary activities tailored to the structural features of a particular substrate. Glucuronoarabinoxylan (GAX) is a major hemicellulose component in softwood, and its structural complexity requires more enzyme specificities to achieve complete hydrolysis compared to glucuronoxylans from hardwood and arabinoxylans from grasses. RESULTS: We report the characterisation of a recombinant α-glucuronidase (Agu115) from Schizophyllum commune capable of removing (4-O-methyl)-glucuronic acid ((Me)GlcA) residues from polymeric and oligomeric xylan. The enzyme is required for the complete deconstruction of spruce glucuronoarabinoxylan (GAX) and acts synergistically with other xylan-degrading enzymes, specifically a xylanase (Xyn10C), an α-l-arabinofuranosidase (AbfA), and a ß-xylosidase (XynB). Each enzyme in this mixture showed varying degrees of potentiation by the other activities, likely due to increased physical access to their respective target monosaccharides. The exo-acting Agu115 and AbfA were unable to remove all of their respective target side chain decorations from GAX, but their specific activity was significantly boosted by the addition of the endo-Xyn10C xylanase. We demonstrate that the proposed enzymatic cocktail (Agu115 with AbfA, Xyn10C and XynB) achieved almost complete conversion of GAX to arabinofuranose (Araf), xylopyranose (Xylp), and MeGlcA monosaccharides. Addition of Agu115 to the enzymatic cocktail contributes specifically to 25 % of the conversion. However, traces of residual oligosaccharides resistant to this combination of enzymes were still present after deconstruction, due to steric hindrances to enzyme access to the substrate. CONCLUSIONS: Our GH115 α-glucuronidase is capable of finely tailoring the molecular structure of softwood GAX, and contributes to the almost complete saccharification of GAX in synergy with other exo- and endo-xylan-acting enzymes. This has great relevance for the cost-efficient production of biofuels from softwood lignocellulose.

2.
Molecules ; 20(10): 17807-17, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404219

RESUMEN

Research on glucuronoyl esterases (GEs) has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA) is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.


Asunto(s)
Esterasas/química , Ácido Glucurónico/química , Ésteres , Cinética , Especificidad por Sustrato
3.
Proc Natl Acad Sci U S A ; 110(16): E1524-32, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23576737

RESUMEN

Coherent network activity among assemblies of interconnected cells is essential for diverse functions in the adult brain. However, cellular networks before formations of chemical synapses are poorly understood. Here, embryonic stem cell-derived neural progenitors were found to form networks exhibiting synchronous calcium ion (Ca(2+)) activity that stimulated cell proliferation. Immature neural cells established circuits that propagated electrical signals between neighboring cells, thereby activating voltage-gated Ca(2+) channels that triggered Ca(2+) oscillations. These network circuits were dependent on gap junctions, because blocking prevented electrotonic transmission both in vitro and in vivo. Inhibiting connexin 43 gap junctions abolished network activity, suppressed proliferation, and affected embryonic cortical layer formation. Cross-correlation analysis revealed highly correlated Ca(2+) activities in small-world networks that followed a scale-free topology. Graph theory predicts that such network designs are effective for biological systems. Taken together, these results demonstrate that immature cells in the developing brain organize in small-world networks that critically regulate neural progenitor proliferation.


Asunto(s)
Encéfalo/embriología , Proliferación Celular , Red Nerviosa , Células-Madre Neurales/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Conexina 43/metabolismo , Sinapsis Eléctricas/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía de Interferencia , Modelos Neurológicos , Células-Madre Neurales/citología , Plásmidos/genética , ARN Interferente Pequeño/genética
4.
PLoS One ; 5(9): e12781, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20877647

RESUMEN

BACKGROUND: Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities. METHODOLOGY/PRINCIPAL FINDINGS: In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (∼86% correct classification), Order (∼88% correct classification) and Family (∼88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs. CONCLUSION/SIGNIFICANCE: The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/enzimología , Hidrolasas de Éster Carboxílico/química , Proteínas Fúngicas/química , Filogenia , Ascomicetos/química , Ascomicetos/genética , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Datos de Secuencia Molecular , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA