Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Clin Oral Investig ; 28(6): 321, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758416

RESUMEN

OBJECTIVES: To obtain and compare the protein profiles of supernumerary and normal permanent dental pulp tissues. MATERIALS AND METHODS: Dental pulp tissues were obtained from supernumerary and normal permanent teeth. Proteins were extracted and analyzed by liquid chromatography-tandem mass spectrometry (LC/MS-MS). Protein identification and quantification from MS data was performed with MaxQuant. Statistical analysis was conducted using Metaboanalyst to identify differentially expressed proteins (DEPs) (P-value < 0.05, fold-change > 2). Gene Ontology enrichment analyses were performed with gProfiler. RESULTS: A total of 3,534 proteins were found in normal dental pulp tissue and 1,093 in supernumerary dental pulp tissue, with 174 DEPs between the two groups. This analysis revealed similar functional characteristics in terms of cellular component organization, cell differentiation, developmental process, and response to stimulus, alongside exclusive functions unique to normal permanent dental pulp tissues such as healing, vascular development and cell death. Upon examination of DEPs, these proteins were associated with the processes of wound healing and apoptosis. CONCLUSIONS: This study provides a comprehensive understanding of the protein profile of dental pulp tissue, including the first such profiling of supernumerary permanent dental pulp. There are functional differences between the proteomic profiles of supernumerary and normal permanent dental pulp tissue, despite certain biological similarities between the two groups. Differences in protein expression were identified, and the identified DEPs were linked to the healing and apoptosis processes. CLINICAL RELEVANCE: This discovery enhances our knowledge of supernumerary and normal permanent pulp tissue, and serves as a valuable reference for future studies on supernumerary teeth.


Asunto(s)
Pulpa Dental , Proteómica , Espectrometría de Masas en Tándem , Diente Supernumerario , Pulpa Dental/metabolismo , Humanos , Diente Supernumerario/metabolismo , Cromatografía Liquida , Masculino , Femenino , Adolescente , Dentición Permanente , Niño
2.
Caries Res ; : 1-10, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636465

RESUMEN

INTRODUCTION: When infants cannot consume breast milk, the most commonly available alternative milk formula is cow milk-based. Due to a rise in the prevalence of cow milk protein allergy (CMPA) among children, this study aimed to assess the biofilm formation and acidogenicity of cow milk-based formulas as well as milk formulas suggested for children with CMPA. METHODS: Cow milk-based formulas with 0%, 10%, or 18% sucrose added, partially hydrolyzed formula (pHF), extensively hydrolyzed formula (eHF), amino acid-based formula (AAF), and soy-based formulas with 0%, or 11% sucrose added were evaluated. Streptococcus mutans was used as a representative microorganism associated with caries. The acidogenicity after 24-h incubation was assessed by the pH of the formed biofilm and lactic acid formation. Biofilm formation was quantified using crystal violet staining. Additionally, the biofilm characteristics were determined using confocal laser scanning microscopy (CLSM). Comparisons were made among formulas without added sucrose to observe protein-based differences. Furthermore, formulas with different sucrose percentages were compared to explore the impact of sucrose content. RESULTS: When comparing the formulas without added sucrose, the biofilm formation in the cow milk-based formula and pHF were significantly greater than the soy-based formula, eHF, and AAF. In the presence of S. mutans, all formulas reduced the biofilm pH below the critical enamel pH. The cow milk-based formula and AAF showed a significantly lower biofilm pH than the pHF, soy-based, and eHF groups, while the lactic acid production was markedly higher in the cow milk-based formula, pHF and AAF, compared with the eHF and soy-based formula. Adding sucrose into the cow milk-based and soy-based formulas substantially increased biofilm mass. The biofilm pH of the cow milk-based formulas, with or without sucrose, was significantly lower than that of the soy-based formulas. The CLSM indicated distinct biofilm characteristics among the different protein-based formulas, with sucrose supplementation promoting S. mutans aggregation in cow milk-based formula biofilm and increased density and intact biofilm in the soy-based formula. CONCLUSION: All assessed milk formulas had caries-inducing factors, including those without supplemental sucrose. Among them, the eHF demonstrated the least caries-inducing factors, attributed to its minimal biofilm formation and the highest biofilm pH.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38023803

RESUMEN

Background: Dental erosion is the loss of dental hard tissues through the acid dissolution of tooth minerals. One of the major factors that cause erosion is the consumption of acidic food and drinks. This study investigated and compared the effect of vitamin waters, herbal beverages, carbonated soft drinks, and fruit juices on the loss of human dental hard tissue. Methods: Human tooth samples were immersed in various drinks: vitamin waters, herbal beverages, carbonated soft drinks, and fruit juices. The pH value of each drink was measured using a pH meter. The weight of each sample was determined before and after six days of immersion in the tested drink, and the weight loss percentage was calculated. The exposed tooth surfaces were also examined under a scanning electron microscope. Results: Most of the tested drinks were acidic and displayed pH values lower than the critical pH for enamel erosion. Significant weight loss of the tooth samples was found in all tested drink groups. Additionally, the samples immersed in fruit juices and herbal beverages exhibited significantly greater weight loss than those immersed in carbonated soft drinks. Scanning electron micrographs showed samples immersed in the tested drinks to demonstrate structural disintegration with occasional void spaces, except for samples immersed in Doi Kham® Lemongrass drink. Conclusion: Most of the tested drinks have the potential to cause dissolution and destruction of dental hard tissues. Consumers should be aware that prolonged exposure to these drinks could lead to permanent loss of tooth mineral and dental erosion.

4.
J Int Soc Prev Community Dent ; 13(4): 333-341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876587

RESUMEN

Aims and Objectives: The primary objectives of this study were to compare salivary oxidative stress (OS) biomarker levels in patients with type 1 diabetes mellitus (T1DM) and without T1DM (non-T1DM) and evaluate the relationships between diabetes, periodontal status, and OS biomarker levels. Materials and Methods: Twenty patients with T1DM and 20 age-matched patients without T1DM were enrolled. All participants were 15-23 years of age and had permanent dentition. Unstimulated whole saliva was collected in a sterile test tube before examination of clinical periodontal parameters, including bleeding on probing (BOP). Salivary levels of OS biomarkers-malondialdehyde, protein carbonyl, total oxidant status (TOS), and total antioxidant capacity-were determined using oxidative and antioxidative assays followed by spectrophotometric measurement at 375-532 nm. The relationships between diabetes, periodontal status, and OS biomarkers were analyzed using multiple linear regression. Results: TOS was significantly lower in the T1DM group compared with the non-T1DM group (5.06 ± 0.39 vs. 6.44 ± 0.51 µmol H2O2 Eq/l, P = 0.035). After adjusting for confounding factors (age, gender, BMI, clinical periodontal parameters, BOP, or diabetes status accordingly), the multiple linear regression showed that T1DM was significantly associated with a reduction of TOS level (P = 0.008). The BOP > 30% group showed a significant correlation with increased TOS levels compared with the BOP ≤ 30% group (P = 0.002). No relationship was found between OS biomarkers and HbA1c levels. Conclusion: Salivary TOS levels were related to both diabetes status and the extent of gingival inflammation. Further studies to elucidate the role of OS in relation of periodontal disease and T1DM are required.

5.
PLoS One ; 18(10): e0292947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851665

RESUMEN

It is well known that the Asian water monitors or Varanus salvator are both scavengers and predators. They can live and survive in the place that exposed to harmful microorganisms. Most people believe that they have some protected mechanisms to confront those infections. The aim of this study is to determine the antibacterial activities of crude peptides and protein hydrolysates extracted from serum of the Varanus salvator. Ten types of bacteria were cultured with crude peptides and protein hydrolysates which were isolated from 21 Varanus salvator's serum. The crude peptides showed some interested inhibition percentages against Enterobacter aerogenes ATCC13048 = 25.6%, Acinetobacter baumannii ATCC19606 = 33.4%, Burkholderia cepacia ATCC25416 = 35.3% and Pseudomonas aeruginosa ATCC27853 = 25.8%, whereas the protein hydrolysates had some inhibition potential on Burkholderia cepacia ATCC25416 = 24.3%. For the rest results of other tests were below 20% of inhibition. In addition, the evidences show that crude peptides have better antibacterial performances significantly than protein hydrolysates on most tested bacteria. Furthermore, antimicrobial peptides prediction shows about 10 percent hit (41/432 sequences). The interpretation shows that the best hit sequence is highly hydrophobic. It may destroy outer membrane of Gram-negative hence prevents the invasion of those bacteria. Altogether, bioinformatics and experiments show similar trends of antimicrobial peptide efficacy from Varanus salvator. Further studies need to be conducted on peptide purification and antimicrobial peptide candidate should be identified.


Asunto(s)
Antibacterianos , Hidrolisados de Proteína , Humanos , Hidrolisados de Proteína/farmacología , Antibacterianos/química , Bacterias , Péptidos/farmacología , Péptidos Antimicrobianos , Agua , Pruebas de Sensibilidad Microbiana
6.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850140

RESUMEN

In this study, we fabricated three dimensional (3D) porous scaffolds of poly(hydroxybutyrate-co-hydroxyvalerate) with 50% HV content. P(HB-50HV) was biosynthesized from bacteria Cupriavidus necator H16 and the in vitro proliferation of dental cells for tissue engineering application was evaluated. Comparisons were made with scaffolds prepared by poly(hydroxybutyrate) (PHB), poly(hydroxybutyrate-co-12%hydroxyvalerate) (P(HB-12HV)), and polycaprolactone (PCL). The water contact angle results indicated a hydrophobic character for all polymeric films. All fabricated scaffolds exhibited a high porosity of 90% with a sponge-like appearance. The P(HB-50HV) scaffolds were distinctively different in compressive modulus and was the material with the lowest stiffness among all scaffolds tested between the dry and wet conditions. The human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs) cultured onto the P(HB-50HV) scaffold adhered to the scaffold and exhibited the highest proliferation with a healthy morphology, demonstrating excellent cell compatibility with P(HB-50HV) scaffolds. These results indicate that the P(HB-50HV) scaffold could be applied as a biomaterial for periodontal tissue engineering and stem cell applications.

7.
Clin Oral Investig ; 27(5): 1973-1980, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36790627

RESUMEN

OBJECTIVES: To evaluate the effect of EDTA and saline as the final irrigation in regenerative endodontic procedures (REPS) on the attachment, proliferation, migration, and differentiation of stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS: Dentin specimens from 140 human third molars were irrigated with various protocols-group 1: normal sterile saline (NSS), group 2: EDTA, group 3: EDTA then 5 mL NSS, or group 4: EDTA then 20 mL NSS. The specimens were used in cell assays. For cell proliferation, SCAPs were seeded on dentin, and the cell viability on days 1, 3, and 7 was determined using an MTT assay. At day 3, the attached cells' morphology was observed using SEM, and cell migration was investigated using a transwell migration assay. The ALP activity and odonto/osteogenic differentiation gene expression were evaluated at days 7, 14, and 21 using an ALP activity assay and RT-qPCR. RESULTS: On days 3 and 7, group 4 demonstrated more viable cells than group 1 (p < 0.01). The amount of migrated cells in groups 2, 3, and 4 was greater compared with group 1 (p < 0.05). Moreover, SCAP differentiation was similar between groups. CONCLUSIONS: Irrigating dentin with EDTA alone or with EDTA then NSS promoted SCAP migration. However, a final irrigation with 20 mL NSS after EDTA promoted SCAP proliferation without affecting their differentiation. CLINICAL RELEVANCE: When using a blood clot as a scaffold, a final flushing with 20 mL NSS after EDTA could be beneficial for clinical REP protocols.


Asunto(s)
Papila Dental , Endodoncia Regenerativa , Humanos , Ácido Edético/farmacología , Osteogénesis , Endodoncia Regenerativa/métodos , Células Madre , Proliferación Celular , Diferenciación Celular , Células Cultivadas
8.
Eur J Dent ; 17(3): 797-803, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36167320

RESUMEN

OBJECTIVE: Chrysin is a hydroxylated flavonoid derived from "propolis or bee glue," a natural product. Previous research on chrysin's biological functions, including anticancer activity, had been reported. However, chrysin's effect on oral squamous cell carcinoma (OSCC) is still scarce. This article aimed to test the cytotoxicity, antiproliferative, antimigration, anti-invasion, and apoptotic effects of purified chrysin in two OSCC cell lines, HSC4 and SCC25. MATERIALS AND METHODS: The malignant phenotype was assessed using cell proliferation, wound healing, and transwell assays. Cell apoptosis was determined using flow cytometry. The positive control was OSCC cells treated with cisplatin, and the negative control was OSCC cells incubated with 0.1% dimethyl sulfoxide. RESULTS: Chrysin at concentrations of 100 and 200 µM could inhibit OSCC cell proliferation, migration, and invasion, as well as enhance cell apoptosis, particularly in the early stages of apoptosis. CONCLUSION: In OSCC cell lines, chrysin has been demonstrated to be an effective antioncogenic agent. Additional research is required to confirm the results. Chrysin should be suggested as a possible alternative therapeutic application for OSCC.

9.
J Clin Exp Dent ; 14(7): e541-e545, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35912025

RESUMEN

Background: Spicy foods are flavorful and stimulate salivation, which is beneficial for individuals with poor appetite. They are also ubiquitous in many regional cuisines, but the chemical compounds in such foods, especially capsaicin from chili peppers, can cause tissue inflammation and generate intolerable burning pain in the oral cavity. Material and Methods: To identify a potential method to reduce capsaicin-induced burning pain without influencing food flavor, we tested the effects of mouth rinsing with various concentrations of sucrose. Inclusion criteria were good general and oral health, while exclusion criteria were poor baseline smell or taste, capsaicin allergy, and current orofacial pain complaints. To define an appropriate capsaicin dose, participants placed filter paper strips impregnated with 0.003%-0.3% capsaicin on the tip of the tongue and rated burning sensation by visual analog scale (VAS) score. Results: A 0.1% capsaicin solution induced tongue burning in the midrange (VAS = 6.33 ± 0.52) and so was used for subsequent tests. We then examined the efficacy concentration of sucrose for reducing tongue burning by recording VAS scores at multiple time points following a 15-s oral rinse with various aqueous sucrose solutions (5%, 10%, and 20%), milk, or pure water (control) after 0.1% capsaicin application. Scores were compared at each time point by one-way ANOVA with post hoc Dunnett's tests. A 15-s rinse with 20% sucrose significantly alleviated burning pain compared to water rinse at 45, 60, 120, and 180 s after capsaicin exposure. Conclusions: Thus, periodic rinsing with 20% aqueous sucrose may help promote spicy food consumption among individuals with poor appetite. Key words:Capsaicin, sucrose, burning sensation.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34712411

RESUMEN

Background. Ultrasonic scaling generates aerosols and splatters contaminated with microorganisms, increasing the risk of disease transmission in the dental office. The present study aimed to evaluate the effectiveness of extraoral suction (EOS) units in aerosol and splatter reduction during ultrasonic scaling. Methods. Ultrasonic scaling was conducted on a dental manikin headset to simulate a scaling procedure. Water containing Lactobacillus acidophilus at a concentration of 107 colony-forming units per milliliter and 1% fluorescein solution was used as the water supply of the scaler. The scaling procedure was conducted with a high-volume evacuator (HVE) or the combination of HVE and an EOS unit. de Man-Rogosa-Sharpe agar plates were placed at different distances surrounding the dental chair. Filter papers were placed at various positions surrounding the oral cavity and on areas of the body. Results. Bioaerosols were detected at every sampling site and could travel as far as 150 cm from the oral cavity. The combination of HVE and EOS significantly reduced the total number of bacterial colonies in the air (P < 0.001). Dissemination of the stain was in the range of 20 cm from the oral cavity. The maximum contaminated surface area was at the 4 o'clock position from the oral cavity. The combination of EOS and HVE significantly reduced the contaminated area (P < 0.05). The stain was also found on the wrists, chest, abdomen, and lap of the operator and assistant. The lap was the most contaminated area of the body. Conclusion. EOS was effective in reducing the bioaerosols and splatters generated during ultrasonic scaling.

11.
J Appl Oral Sci ; 29: e20201074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34586189

RESUMEN

Hyperglycemia, a major characteristic of diabetes, is considered to play a vital role in diabetic complications. High glucose levels have been found to inhibit the mineralization of dental pulp cells. However, gene expression associated with this phenomenon has not yet been reported. This is important for future dental therapeutic application. OBJECTIVE: Our study aimed to investigate the effect of high glucose levels on mineralization of human dental pulp-derived cells (hDPCs) and identify the genes involved. METHODOLOGY: hDPCs were cultured in mineralizing medium containing 25 or 5.5 mM D-glucose. On days 1 and 14, RNA was extracted and expression microarray performed. Then, differentially expressed genes (DEGs) were selected for further validation using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Cells were fixed and stained with alizarin red on day 21 to detect the formation of mineralized nodules, which was further quantified by acetic acid extraction. RESULTS: Comparisons between high-glucose and low-glucose conditions showed that on day 1, there were 72 significantly up-regulated and 75 down-regulated genes in the high-glucose condition. Moreover, 115 significantly up- and 292 down-regulated genes were identified in the high-glucose condition on day 14. DEGs were enriched in different GO terms and pathways, such as biological and cellular processes, metabolic pathways, cytokine-cytokine receptor interaction and AGE-RAGE signaling pathways. RT-qPCR results confirmed the significant expression of pyruvate dehydrogenase kinase 3 (PDK3), cyclin-dependent kinase 8 (CDK8), activating transcription factor 3 (ATF3), fibulin-7 (Fbln-7), hyaluronan synthase 1 (HAS1), interleukin 4 receptor (IL-4R) and apolipoprotein C1 (ApoC1). CONCLUSIONS: The high-glucose condition significantly inhibited the mineralization of hDPCs. DEGs were identified, and interestingly, HAS1 and Fbln-7 genes may be involved in the glucose inhibitory effect on hDPC mineralization.


Asunto(s)
Pulpa Dental , Transcriptoma , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Glucosa , Humanos , Análisis por Micromatrices
12.
Eur J Dent ; 15(4): 727-732, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34331301

RESUMEN

OBJECTIVES: This study aimed to evaluate the effect of Porphyromonas gingivalis and nicotine on the in vitro osteogenic differentiation of periodontal ligament (PDL) fibroblasts. MATERIALS AND METHODS: PDLs were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum at 37°C under 5% CO2 and 100% humidified atmosphere. Cells were incubated with various concentrations of nicotine and P. gingivalis extracts, and cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. To study cell differentiation, PDLs (5 × 104cells) were treated with the osteogenic differentiation medium containing 10 mM ß-glycerophosphate, 10 nM dexamethasone, 50 mg/mL ascorbic acid, 1 µM nicotine, and 50 µg/mL P. gingivalis lysate. mRNA samples were collected at 0, 7, and 14 days. Odontogenic-related gene expression, namely, Runt-related transcription factor 2 (Runx2), collagen type I (COL1A1), and alkaline phosphatase (ALP) was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Calcified nodule formation was determined on day 28 using Alizarin Red S. Analysis of variance and Tukey's test were used to compare the difference among groups at significant level of p < 0.05. RESULTS: It showed that 50 µg/mL of P. gingivalis lysate and 1 µM of nicotine showed no toxicity to PDLs. Runx2, COL1A1, and ALP expression were found to decrease significantly after 7 days of treatment, while osteocalcin expression was found to decrease after 14 days. The nodule formation in the control group was much greater in both number and size of nodules than in experimental groups, which implied a positive sign of calcium deposition in controls. CONCLUSION: The results indicated that nicotine and P. gingivalis showed adverse effect on osteogenic differentiation properties of PDLs.

13.
J World Fed Orthod ; 10(2): 79-85, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33888447

RESUMEN

BACKGROUND: The aim of this study was to investigate the influence of three different light-emitting diode (LED) wavelengths on the proliferation and osteoblastic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. METHODS: PDLSCs seeded on 96- and 24-well plates, for proliferation and osteoblastic differentiation, respectively, were irradiated daily by LED light with peak emission wavelengths of 630, 680, and 830 nm at constant energy densities of 3.5 J/cm2. Cultures were grown for 8 days for the proliferation assay, 10 days for the alkaline phosphatase (ALP) assay, and 28 days for Alizarin red staining. Mitochondrial activity, ALP enzyme level, and the ability to form calcium phosphate deposits were measured and compared across cultures. RESULTS: Results obtained from statistical analysis of the experimental data indicated that the rate of proliferation (P < 0.05) in 830-nm irradiated cultures were significantly higher than the control samples at day 6 and 8; whereas, for the 630- and 680-nm groups, test results showed lower proliferation rates at day 8. For osteoblastic differentiation, significantly greater mineralization than the control samples was detected in the red-light groups (630 and 680 nm) during the late differentiation period (P < 0.001), which was supported by a higher ALP activity of the 630- and 680-nm groups in the early stage (P < 0.01). CONCLUSION: The results of this study demonstrate that the PDLSCs responded differently to specific LED wavelengths. For enhancing cellular proliferation, 830-nm LED irradiation was more effective. On the other hand, the wavelengths of 630 and 680 nm were better for stimulating osteoblastic differentiation.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Madre
14.
J Int Acad Periodontol ; 23(1): 3-10, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33512337

RESUMEN

AIMS: To test that the osteogenic capacity of periodontal ligament (PDL) fibroblasts can be mediated by TLR2 and TLR4 activation. MATERIALS AND METHODS: Human PDL fibroblasts were cultured in osteogenic medium and treated with TLR2 and TLR4 agonists (Pam3CSK4 and monophosphoryl Lipid A (MPLA), respectively). Cell proliferation was measured by MTT and BrdU incorporation. Osteogenic differentiation was measured by alkaline phosphatase (ALP) activity. Nodule formation was measured for osteoblast function. The expression of markers of potential signaling pathways (RUNX2, OCN, BSP and Osterix) was evaluated by quantitative PCR. RESULTS: PDL fibroblasts grew at the same rate during the first 5 days in response to both Pam3CSK5 and MPLA. On day 7, cells cultured in the presence of Pam3CSK4 had a significantly higher rate of DNA replication, while cells in MPLA group had a significantly lower DNA replication rate (one-third) compared to the control (p less than 0.05). Pam3CSK4 induced significantly higher ALP activity and larger calcified nodules. TLR4 activation significantly reduced the expression of RUNX2 and osterix and enhanced OCN. Neither TLR2 nor TLR4 affected BSP expression. CONCLUSIONS: These data suggest that the activation of TLR2 and TLR4 differentially and perhaps antagonistically modulate osteogenesis by human PDL fibroblasts and have a direct role of TLR-mediated PDL function during periodontal regeneration as a potential target for therapeutics.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Células Cultivadas , Fibroblastos , Humanos , Receptor Toll-Like 2 , Receptor Toll-Like 4
15.
J. appl. oral sci ; 29: e20201074, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1340110

RESUMEN

Abstract Hyperglycemia, a major characteristic of diabetes, is considered to play a vital role in diabetic complications. High glucose levels have been found to inhibit the mineralization of dental pulp cells. However, gene expression associated with this phenomenon has not yet been reported. This is important for future dental therapeutic application. Objective Our study aimed to investigate the effect of high glucose levels on mineralization of human dental pulp-derived cells (hDPCs) and identify the genes involved. Methodology hDPCs were cultured in mineralizing medium containing 25 or 5.5 mM D-glucose. On days 1 and 14, RNA was extracted and expression microarray performed. Then, differentially expressed genes (DEGs) were selected for further validation using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Cells were fixed and stained with alizarin red on day 21 to detect the formation of mineralized nodules, which was further quantified by acetic acid extraction. Results Comparisons between high-glucose and low-glucose conditions showed that on day 1, there were 72 significantly up-regulated and 75 down-regulated genes in the high-glucose condition. Moreover, 115 significantly up- and 292 down-regulated genes were identified in the high-glucose condition on day 14. DEGs were enriched in different GO terms and pathways, such as biological and cellular processes, metabolic pathways, cytokine-cytokine receptor interaction and AGE-RAGE signaling pathways. RT-qPCR results confirmed the significant expression of pyruvate dehydrogenase kinase 3 (PDK3), cyclin-dependent kinase 8 (CDK8), activating transcription factor 3 (ATF3), fibulin-7 (Fbln-7), hyaluronan synthase 1 (HAS1), interleukin 4 receptor (IL-4R) and apolipoprotein C1 (ApoC1). Conclusions The high-glucose condition significantly inhibited the mineralization of hDPCs. DEGs were identified, and interestingly, HAS1 and Fbln-7 genes may be involved in the glucose inhibitory effect on hDPC mineralization.


Asunto(s)
Humanos , Pulpa Dental , Transcriptoma , Diferenciación Celular , Células Cultivadas , Análisis por Micromatrices , Proliferación Celular , Glucosa
16.
Arch Oral Biol ; 119: 104888, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32932150

RESUMEN

OBJECTIVE: To compare proteomics and biological function of human dentin matrix molecules (hDMMs) and bovine dentin matrix molecules (bDMMs). DESIGN: Dentin powder from human or bovine teeth (n = 4) was demineralized in 10% (v/v) ethylenediaminetetraacetic acid for 7 days. The extracts were dialyzed, lyophilized and proteins were characterized using liquid chromatography-tandem mass spectrometry and shotgun proteomic analysis. To study biological function, mouse-derived undifferentiated dental pulp cells (OD21) were treated with 0.01, 0.1 or 1 µg/mL of hDMMs or bDMMs and proliferation was measured after 24 hours and 48 hours using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell migration was assessed after 24 hours using a Boyden chamber. Alizarin Red S staining was used to evaluate mineral formation. RESULTS: There were 307 proteins identified, of which 93 proteins were common to both species. Gene Ontology functional analysis demonstrated similar pattern of biological process in both species which consisted mainly of tissue development and biomineralization. hDMMs and bDMMs both enhanced cell proliferation. After 24 hours, all concentrations of bDMMs promoted cell proliferation (p ≤ 0.05), while hDMMs did not affect proliferation. After 48 hours, groups with 1µg/mL of bDMMs and 0.01µg/mL of hDMMs had increased cell proliferation compared to control (p ≤ 0.0001). All concentrations of hDMMs and bDMMs enhanced cell migration and mineralization (p ≤ 0.0001). CONCLUSION: bDMMs has similar biological functions as hDMMs. Moreover, bDMMs stimulated cell proliferation, migration and differentiation similar to hDMMs.


Asunto(s)
Pulpa Dental/citología , Dentina/química , Regeneración , Animales , Bovinos , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Proteómica
17.
Braz Dent J ; 31(3): 298-303, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32667524

RESUMEN

Diabetes is a group of metabolic disorders that can lead to damage and dysfunction of many organs including the dental pulp. Increased inflammatory response, reduction of dentin formation and impaired healing were reported in diabetic dental pulp. Hyperglycemia, which is a main characteristic of diabetes, was suggested to play a role in many diabetic complications. Therefore our aim was to investigate the effects of high glucose levels on proliferation, reactive oxygen species (ROS) production and odontogenic differentiation of human dental pulp cells (HDPCs). HDPCs were cultured under low glucose (5.5mM Glucose), high glucose (25 mM Glucose) and mannitol (iso-osmolar control) conditions. Cell proliferation was analyzed by MTT assay for 11 days. Glutathione and DCFH-DA assay were used to assess ROS and antioxidant levels after 24 h of glucose exposure. Odontogenic differentiation was evaluated and quantified by alizarin red staining on day 21. Expression of mineralization-associated genes, which were alkaline phosphatase, dentin sialophosphoprotein and osteonectin, was determined by RT-qPCR on day 14. The results showed that high glucose concentration decreased proliferation of HDPCs. Odontogenic differentiation, both by gene expression and mineral matrix deposit, was inhibited by high glucose condition. In addition, high DCF levels and low reduced glutathione levels were observed in high glucose condition. However, no differences were observed between mannitol and low glucose conditions. In conclusion, the results clearly showed the negative effect of high glucose condition on HDPCs proliferation and differentiation. Moreover, it also induced ROS production of HDPCs.


Asunto(s)
Fosfatasa Alcalina , Pulpa Dental , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Proteínas de la Matriz Extracelular , Glucosa , Humanos , Odontoblastos , Fosfoproteínas , Especies Reactivas de Oxígeno
18.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708242

RESUMEN

The biological benefits of using two fractions derived from injectable platelet-rich fibrin (i-PRF) in bone regeneration remain unclear. Thus, the current study examined two fractionation protocols producing yellow i-PRF and red i-PRF on periodontal ligament stem cells (PDLSCs). The i-PRF samples from five donors were harvested from two different levels, with and without a buffy coat layer, to obtain red and yellow i-PRF, respectively. The PDLSCs were isolated and characterized before their experimental use. The culture medium in each assay was loaded with 20% of the conditioned medium containing the factors released from the red and yellow i-PRF. Cell proliferation and cell migration were determined with an MTT and trans-well assay, respectively. Osteogenic differentiation was investigated using alkaline phosphatase and Alizarin red staining. The efficiency of both i-PRFs was statistically compared. We found that the factors released from the red i-PRF had a greater effect on cell proliferation and cell migration. Moreover, the factors released from the yellow i-PRF stimulated PDLSC osteogenic differentiation earlier compared with the red i-PRF. These data suggest that the red i-PRF might be suitable for using in bone regeneration because it induced the mobilization and growth of bone regenerative cells without inducing premature mineralization.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/citología , Fibrina Rica en Plaquetas/metabolismo , Células Madre/citología , Adulto , Fosfatasa Alcalina/metabolismo , Regeneración Ósea/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Masculino , Ligamento Periodontal/metabolismo , Células Madre/metabolismo
19.
Braz. dent. j ; 31(3): 298-303, May-June 2020. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1132307

RESUMEN

Abstract Diabetes is a group of metabolic disorders that can lead to damage and dysfunction of many organs including the dental pulp. Increased inflammatory response, reduction of dentin formation and impaired healing were reported in diabetic dental pulp. Hyperglycemia, which is a main characteristic of diabetes, was suggested to play a role in many diabetic complications. Therefore our aim was to investigate the effects of high glucose levels on proliferation, reactive oxygen species (ROS) production and odontogenic differentiation of human dental pulp cells (HDPCs). HDPCs were cultured under low glucose (5.5mM Glucose), high glucose (25 mM Glucose) and mannitol (iso-osmolar control) conditions. Cell proliferation was analyzed by MTT assay for 11 days. Glutathione and DCFH-DA assay were used to assess ROS and antioxidant levels after 24 h of glucose exposure. Odontogenic differentiation was evaluated and quantified by alizarin red staining on day 21. Expression of mineralization-associated genes, which were alkaline phosphatase, dentin sialophosphoprotein and osteonectin, was determined by RT-qPCR on day 14. The results showed that high glucose concentration decreased proliferation of HDPCs. Odontogenic differentiation, both by gene expression and mineral matrix deposit, was inhibited by high glucose condition. In addition, high DCF levels and low reduced glutathione levels were observed in high glucose condition. However, no differences were observed between mannitol and low glucose conditions. In conclusion, the results clearly showed the negative effect of high glucose condition on HDPCs proliferation and differentiation. Moreover, it also induced ROS production of HDPCs.


Resumo O diabetes abrange um grupo de distúrbios metabólicos que podem levar a danos e disfunções de muitos órgãos, incluindo a polpa dentária. Aumento da resposta inflamatória, redução da formação de dentina e comprometimento da cicatrização foram relatados na polpa dentária diabética. A hiperglicemia, que é uma característica determinante do diabetes, desempenha um papel importante em muitas complicações diabéticas. Portanto, nosso objetivo foi investigar os efeitos dos altos níveis de glicose na proliferação, produção de espécies reativas de oxigênio (ROS, em inglês) e diferenciação odontogênica das células da polpa dental humana (HDPCs, em inglês). As HDPCs foram cultivadas em condições de baixa glicose (glicose 5,5 mM), alta glicose (glicose 25 mM) e manitol (controle iso-osmolar). A proliferação celular foi analisada pelo ensaio MTT por 11 dias. Glutationa e DCFH-DA foram utilizados para avaliar os níveis de ROS e antioxidantes após 24 h de exposição à glicose. A diferenciação odontogênica foi avaliada e quantificada pela coloração com vermelho de alizarina no dia 21. A expressão de genes associados à mineralização, que eram fosfatase alcalina, sialofosfoproteína de dentina e osteonectina, foi determinada por RT-qPCR no dia 14. Os resultados mostraram que a alta concentração de glicose diminuiu a proliferação de HDPCs. A diferenciação odontogênica, tanto pela expressão gênica quanto pelo depósito da matriz mineral, foi inibida pela condição de alta glicose. Além disso, altos níveis de DCF e níveis reduzidos de glutationa foram observados na condição de alta glicose. No entanto, não foram observadas diferenças entre o manitol e as condições de baixa glicose. Em conclusão, os resultados mostraram claramente o efeito negativo da condição de alta glicose na proliferação e diferenciação de HDPCs. Além disso, essa condição também induziu a produção de ROS em HDPCs.


Asunto(s)
Humanos , Pulpa Dental , Fosfatasa Alcalina , Fosfoproteínas , Diferenciación Celular , Células Cultivadas , Proteínas de la Matriz Extracelular , Especies Reactivas de Oxígeno , Proliferación Celular , Glucosa , Odontoblastos
20.
PLoS One ; 15(2): e0228921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053656

RESUMEN

OBJECTIVE: Interleukin (IL)-17A and IL-18 have been proposed to play important roles in periodontitis and type 2 diabetes mellitus (DM), but human data are conflicting. The present study aimed to investigate the roles of IL-17A and IL-18 in periodontitis and DM by measuring salivary and serum levels, respectively. MATERIALS AND METHODS: A total of 49 participants with type 2 DM and 25 control subjects without type 2 DM were recruited. A periodontal screening and recording (PSR) index (0, 1-2, 3, and 4) was used to classify whether these subjects had periodontitis. Salivary and serum IL-17A and IL-18 levels were measured by enzyme-linked immunosorbent assay. Multiple linear regression analyses were used to evaluate the associations between these cytokines and clinical parameters. RESULTS: Salivary IL-17A levels were not significantly different between patients with DM and controls, however, the levels were significantly higher in controls with periodontitis than those without periodontitis (p = 0.031). Salivary IL-17A levels were significantly associated with the PSR index (ß = 0.369, p = 0.011). Multiple linear regression analyses revealed the association of salivary IL-18 levels and fasting plasma glucose (ß = 0.270, p = 0.022) whereas serum IL-18 levels were associated with HbA1C (ß = 0.293, p = 0.017). No correlation between salivary and serum levels of IL-17A and IL-18 was found. CONCLUSION: Salivary IL-17A was strongly associated with periodontitis, whereas salivary IL-18 was associated with FPG and serum IL-18 was associated with HbA1C. These results suggest the role of these cytokines in periodontal inflammation and DM.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Interleucina-17/análisis , Interleucina-18/análisis , Adulto , Estudios de Casos y Controles , Periodontitis Crónica/complicaciones , Citocinas/análisis , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Femenino , Líquido del Surco Gingival/química , Hemoglobina Glucada/análisis , Humanos , Interleucina-17/sangre , Interleucina-18/sangre , Masculino , Persona de Mediana Edad , Índice Periodontal , Periodontitis/sangre , Periodontitis/metabolismo , Saliva/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA