Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677153

RESUMEN

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Asunto(s)
Materiales Biocompatibles Revestidos , Stents , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Vasos Coronarios/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Anticoagulantes/farmacología , Anticoagulantes/química , Propiedades de Superficie , Proliferación Celular/efectos de los fármacos , Acero Inoxidable/química , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Animales , Levodopa/química , Levodopa/farmacología
2.
Chemosphere ; 311(Pt 1): 136756, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36228731

RESUMEN

Lead (Pb2+) is a well-known heavy metal and toxic synthetic industrial pollutant in the ecosystem and causes severe threats to living organisms. It is paramount to develop a sustainable microbial engineering approach to remove synthetic pollutants from the environment. Genetic code engineering is emerging as an important microbial engineering tool in biosciences to biosynthesis congener protein production beyond the canonical set of natural molecules and expand the chemistries of living cells. Here, we prepare cells expressing unnatural amino acid encoded congener proteins for effectively removable toxic synthetic industrial pollutants (Pb2+) with high binding efficiency. Native and the developed congener proteins expressing cells adapted the Langmuir and Sips adsorption model that recommends uniform adsorption with Pb2+ ions. This could be due to a more significant number of functional groups on the protein surface. Fluorescence spectroscopic, field emission scanning electron microscope, X-ray photoelectron spectroscopic analysis, and protein-metal molecular stimulation coordination allowed us to explore the role of hydroxylation on Pb2+ adsorption. The bioreactor filled with immobilized protein-containing active granules showed >90% of lead removal in the contaminated water samples. The desorption of bound Pb2+ from GFP and its variants were studied by varying the pH to reuse the proteins for subsequent usage. We observed that about 70% of the GFP and its variants could be recycled and >75% of fluorescence efficiency could be recovered. Among all the variants, GFPHPDP exhibits high affinity and maintains the reusability efficiency in 7 consecutive cycles. These results suggest that genetic code engineering of cells encoding unnatural amino acids could be a next-generation microbial engineering tool for manipulating and developing the microbial strain's selective and effective removal of synthetic pollutants from the environment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Agua , Contaminantes Ambientales/análisis , Ecosistema , Aminoácidos , Plomo , Adsorción , Cinética , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA