Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dev Growth Differ ; 66(3): 256-265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439617

RESUMEN

Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of ß-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.


Asunto(s)
Fosfatasa Alcalina , Calor , Animales , Femenino , Embarazo , Xenopus laevis , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/análisis , Placenta , Animales Modificados Genéticamente
2.
Sci Rep ; 13(1): 13214, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580380

RESUMEN

Cancer treatment is still challenging because the disease is often caused by multiple mutations. Although genomic studies have identified many oncogenes and tumor suppressor genes, gene sets involved in tumorigenesis remain poorly understood. Xenopus, a genus of aquatic frogs, is a useful model to identify gene sets because it can be genetically and experimentally analyzed. Here, we analyzed gene expression in tumor tissues of three individuals in Xenopus tropicalis and identified 55 differentially expressed genes (DEGs). Gene ontology (GO) analysis showed that the upregulated genes in the tumor tissues were enriched in GO terms related to the extracellular matrix and collagen fibril organization. Hierarchical clustering showed that the gene expression patterns of tumor tissues in X. tropicalis were comparable to those of human connective, soft, and subcutaneous tissue-derived cancers. Additionally, pathway analysis revealed that these DEGs were associated with multiple pathways, including the extracellular matrix, collagen fibril organization, MET signaling, and keratan sulfate. We also found that the expression tendency of some DEGs that have not been well analyzed in the cancer field clearly determines the prognosis of human cancer patients. This study provides a remarkable reference for future experimental work on X. tropicalis to identify gene sets involved in human cancer.


Asunto(s)
Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Animales , Xenopus/genética , Xenopus/metabolismo , Biología Computacional , Análisis de Secuencia de ARN , Colágeno/genética , Colágeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Ontología de Genes
3.
Dev Growth Differ ; 65(8): 481-497, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37505799

RESUMEN

Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.


Asunto(s)
Displasia Campomélica , Animales , Humanos , Xenopus laevis/metabolismo , Displasia Campomélica/genética , Xenopus/genética , Xenopus/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Fenotipo , Genotipo
4.
Dev Growth Differ ; 65(6): 300-310, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37477433

RESUMEN

Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.


Asunto(s)
Encéfalo , Animales , Xenopus laevis/fisiología , Microtomografía por Rayos X , Larva , Animales Modificados Genéticamente , Encéfalo/diagnóstico por imagen
5.
Dev Biol ; 493: 17-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279927

RESUMEN

Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 â€‹kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 â€‹kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.


Asunto(s)
Pronefro , Tretinoina , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pronefro/metabolismo , Riñón/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(33): e2204338119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939709

RESUMEN

Despite the recent discovery of tissue regeneration enhancers in highly regenerative animals, upstream and downstream genetic programs connected by these enhancers still remain unclear. Here, we performed a genome-wide analysis of enhancers and associated genes in regenerating nephric tubules of Xenopus laevis. Putative enhancers were identified using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) analyses. Their target genes were predicted based on their proximity to enhancers on genomic DNA and consistency of their transcriptome profiles to ATAC-seq/ChIP-seq profiles of the enhancers. Motif enrichment analysis identified the central role of Krüppel-like factors (Klf) in the enhancer. Klf15, a member of the Klf family, directly binds enhancers and stimulates expression of regenerative genes, including adrenoreceptor alpha 1A (adra1a), whereas inhibition of Klf15 activity results in failure of nephric tubule regeneration. Moreover, pharmacological inhibition of Adra1a-signaling suppresses nephric tubule regeneration, while its activation promotes nephric tubule regeneration and restores organ size. These results indicate that Klf15-dependent adrenergic receptor signaling through regeneration enhancers plays a central role in the genetic network for kidney regeneration.


Asunto(s)
Elementos de Facilitación Genéticos , Túbulos Renales , Factores de Transcripción de Tipo Kruppel , Receptores Adrenérgicos , Regeneración , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Túbulos Renales/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Receptores Adrenérgicos/metabolismo , Regeneración/genética , Xenopus laevis
7.
Dev Growth Differ ; 64(4): 219-225, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338712

RESUMEN

The CRISPR/Cas9 method has become popular for gene disruption experiments in Xenopus laevis. However, the experimental conditions that influence the efficiency of CRISPR/Cas9 remain unclear. To that end, we developed an image analysis technique for the semi-quantitative evaluation of the pigment phenotype resulting from the disruption of tyrosinase genes in X. laevis using a CRISPR/Cas9 approach, and then examined the effects of varying five experimental parameters (timing of the CRISPR reagent injection into developing embryos; amount of Cas9 mRNA in the injection reagent; total injection volume per embryo; number of injection sites per embryo; and the culture temperature of the injected embryos) on the gene disruption efficiency. The results of this systematic analysis suggest that the highest possible efficiency of target gene disruption can be achieved by injecting a total of 20 nL of the CRISPR reagent containing 1500 pg of Cas9 mRNA or 4 ng of Cas9 protein into two separate locations (10 nL each) of one-cell stage embryos cultured at 22°C. This study also highlights the importance of balancing the experimental parameters for increasing gene disruption efficiency and provides valuable insights into the optimal conditions for applying the CRISPR/Cas9 system to new experimental organisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Fenotipo , ARN Mensajero/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
9.
Dev Growth Differ ; 62(5): 343-354, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32096563

RESUMEN

During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regeneración/genética , Xenopus laevis/genética , Animales , Proteínas de Xenopus/genética , Xenopus laevis/fisiología
10.
Elife ; 82019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30616715

RESUMEN

Amphibians and fish have the ability to regenerate numerous tissues, whereas mammals have a limited regenerative capacity. Despite numerous developmental genes becoming reactivated during regeneration, an extensive analysis is yet to be performed on whether highly regenerative animals utilize unique cis-regulatory elements for the reactivation of genes during regeneration and how such cis-regulatory elements become activated. Here, we screened regeneration signal-response enhancers at the lhx1 locus using Xenopus and found that the noncoding elements conserved from fish to human function as enhancers in the regenerating nephric tubules. A DNA-binding motif of Arid3a, a component of H3K9me3 demethylases, was commonly found in RSREs. Arid3a binds to RSREs and reduces the H3K9me3 levels. It promotes cell cycle progression and causes the outgrowth of nephric tubules, whereas the conditional knockdown of arid3a using photo-morpholino inhibits regeneration. These results suggest that Arid3a contributes to the regeneration of nephric tubules by decreasing H3K9me3 on RSREs.


Asunto(s)
Evolución Biológica , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Túbulos Renales/fisiología , Nefronas/fisiología , Regeneración/fisiología , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/fisiología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Cromatina/metabolismo , Peces , Humanos , Nefrectomía
11.
Eur J Neurosci ; 46(3): 1863-1874, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28661085

RESUMEN

Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT1 receptor antagonist blocked the reverse phototaxis while serotonin 5HT2 receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA1 receptor antagonist blocked this reverse phototaxis, while dopamine DA2 receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.


Asunto(s)
AMP Cíclico/metabolismo , Dopaminérgicos/farmacología , Dopamina/farmacología , Fototaxis/efectos de los fármacos , Serotoninérgicos/farmacología , Serotonina/farmacología , Inhibidores de Adenilato Ciclasa/farmacología , Animales , Astacoidea , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
12.
Dev Biol ; 427(1): 84-92, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28501477

RESUMEN

Common models for the evolution of duplicated genes after genome duplication are subfunctionalization, neofunctionalization, and pseudogenization. Although the crucial roles of cis-regulatory mutations in subfunctionalization are well-documented, their involvement in pseudogenization and/or neofunctionalization remains unclear. We addressed this issue by investigating the evolution of duplicated homeobox genes, six6.L and six6.S, in the allotetraploid frog Xenopus laevis. Based on a comparative expression analysis, we observed similar eye-specific expression patterns for the two loci and their single ortholog in the ancestral-type diploid species Xenopus tropicalis. However, we detected lower levels of six6.S expression than six6.L expression. The six6.S enhancer sequence was more highly diverged from the orthologous enhancer of X. tropicalis than the six6.L enhancer, and showed weaker activity in a transgenic reporter assay. Based on a phylogenetic analysis of the protein sequences, we observed greater divergence between X. tropicalis Six6 and Six6.S than between X. tropicalis Six6 and Six6.L, and the observed mutations were reminiscent of a microphthalmia mutation in human SIX6. Misexpression experiments showed that six6.S has weaker eye-enlarging activity than six6.L, and targeted disruption of six6.L reduced the eye size more significantly than that of six6.S. These results suggest that enhancer attenuation stimulates the accumulation of hypomorphic coding mutations, or vice versa, in one duplicated gene copy and facilitates pseudogenization. We also underscore the value of the allotetraploid genome of X. laevis as a resource for studying latent pathogenic mutations.


Asunto(s)
Proteínas de Homeodominio/genética , Mutación/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Duplicados/genética , Proteínas de Homeodominio/clasificación , Hibridación in Situ , Filogenia , Isoformas de Proteínas/genética , Seudogenes/genética , Retina/embriología , Retina/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Xenopus laevis/embriología
13.
Dev Biol ; 425(2): 152-160, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28359808

RESUMEN

During vertebrate evolution, whole genome duplications resulted in a number of duplicated genes, some of which eventually changed their expression patterns and/or levels via alteration of cis-regulatory sequences. However, the initial process involved in such cis-regulatory changes remains unclear. Therefore, we investigated this process by analyzing the duplicated hand1 genes of Xenopus laevis (hand1.L and hand1.S), which were generated by allotetraploidization 17-18 million years ago, and compared these with their single ortholog in the ancestral-type diploid species X. tropicalis. A dN/dS analysis indicated that hand1.L and hand1.S are still under purifying selection, and thus, their products appear to retain ancestral functional properties. RNA-seq and in situ hybridization analyses revealed that hand1.L and hand1.S have similar expression patterns to each other and to X. tropicalis hand1, but the hand1.S expression level was much lower than the hand1.L expression level in the primordial heart. A comparative sequence analysis, luciferase reporter analysis, ChIP-PCR analysis, and transgenic reporter analysis showed that a single nucleotide substitution in the hand1.S promoter was responsible for the reduced expression in the heart. These findings demonstrated that a small change in the promoter sequence can trigger diversification of duplicated gene expression prior to diversification of their encoded protein functions in a young duplicated genome.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Homología de Secuencia de Ácido Nucleico , Xenopus/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Secuencia Conservada/genética , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos/genética , Genes Reporteros , Humanos , Hibridación in Situ , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN , Sintenía/genética , Xenopus/embriología
14.
Int J Dev Biol ; 59(4-6): 241-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26009236

RESUMEN

The embryonic nephric mesenchyme contains pluripotent progenitor cells. Six2, a homeodomain transcription factor, is expressed in a subset of the nephric mesenchyme, and it functions to maintain a progenitor state by suppressing nephrogenesis. Despite the functional significance of Six2 in nephric development, its regulatory mechanisms remain unclear. To identify the cis-regulatory elements for Six2, we focused on the evolutionarily conserved sequences known as conserved noncoding sequences (CNSs) associated with the Six2 locus. Transgenic experiments using Xenopus laevis embryos revealed that three of the eight CNSs located within a 317-kb segment of the Six2 genomic locus were nephric enhancers. Motif analysis of transcription factors combined with phylogenetic footprinting revealed the enrichment of putative T-cell factor (Tcf)-, Hox-, and SWI/SNF complex helicase-like transcription factor (Hltf)- and AT-rich interactive domain 3A (Arid3a)-binding motif sequences in these enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Pronefro/metabolismo , Proteínas de Xenopus/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Secuencia Conservada/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Organogénesis/genética , Filogenia , Pronefro/embriología , Homología de Secuencia de Ácido Nucleico , Xenopus/clasificación , Xenopus/embriología , Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA