Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Eur J Biochem ; 262(3): 840-9, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10411647

RESUMEN

Kinetic studies of tetrameric recombinant human tyrosine hydroxylase isoform 1 (hTH1) have revealed properties so far not reported for this enzyme. Firstly, with the natural cofactor (6R)-Lerythro-5,6,7, 8-tetrahydrobiopterin (H4biopterin) a time-dependent change (burst) in enzyme activity was observed, with a half-time of about 20 s for the kinetic transient. Secondly, nonhyperbolic saturation behaviour was found for H4biopterin with a pronounced negative cooperativity (0.39 < h < 0.58; [S]0.5 = 24 +/- 4 microM). On phosphorylation of Ser40 by protein kinase A, the affinity for H4biopterin increased ([S]0.5 = 11 +/- 2 microM) and the negative cooperativity was amplified (h = 0.27 +/- 0.03). The dimeric C-terminal deletion mutant (Delta473-528) of hTH1 also showed negative cooperativity of H4biopterin binding (h = 0.4). Cooperativity was not observed with the cofactor analogues 6-methyl-5,6,7,8-tetrahydropterin (h = 0.9 +/- 0.1; Km = 62.7 +/- 5.7 microM) and 3-methyl-5,6,7, 8-tetrahydropterin (H43-methyl-pterin)(h = 1.0 +/- 0.1; Km = 687 +/- 50 microM). In the presence of 1 mM H43-methyl-pterin, used as a competitive cofactor analogue to BH4, hyperbolic saturation curves were also found for H4biopterin (h = 1.0), thus confirming the genuine nature of the kinetic negative cooperativity. This cooperativity was confirmed by real-time biospecific interaction analysis by surface plasmon resonance detection. The equilibrium binding of H4biopterin to the immobilized iron-free apoenzyme results in a saturable positive resonance unit (DeltaRU) response with negative cooperativity (h = 0.52-0.56). Infrared spectroscopic studies revealed a reduced thermal stability both of the apo-and the holo-hTH1 on binding of H4biopterin and Lerythro-dihydrobiopterin (H2biopterin). Moreover, the ligand-bound forms of the enzyme also showed a decreased resistance to limited tryptic proteolysis. These findings indicate that the binding of H4biopterin at the active site induces a destabilizing conformational change in the enzyme which could be related to the observed negative cooperativity. Thus, our studies provide new insight into the regulation of TH by the concentration of H4biopterin which may have significant implications for the physiological regulation of catecholamine biosynthesis in neuroendocrine cells.


Asunto(s)
Biopterinas/análogos & derivados , Resonancia por Plasmón de Superficie , Tirosina 3-Monooxigenasa/metabolismo , Animales , Apoenzimas/metabolismo , Biopterinas/química , Biopterinas/metabolismo , Bovinos , Estabilidad de Enzimas , Humanos , Cinética , Ligandos , Ratones , Unión Proteica , Conformación Proteica , Pterinas/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura , Tirosina 3-Monooxigenasa/química
2.
Biochem J ; 306 ( Pt 2): 589-97, 1995 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-7887915

RESUMEN

Recombinant human phenylalanine hydroxylase (hPAH) was produced in high yields in Escherichia coli using the pET and pMAL expression vectors. In the pMAL system, hPAH was fused through the target sequences of the restriction protease factor Xa (IEGR) or enterokinase (D4K) to the C-terminal end of the highly expressed E. coli maltose-binding protein (MBP). The recombinant hPAH, recovered in soluble forms, revealed a high specific activity even in crude extracts and was detected as a homogeneous band by Western-blot analysis using affinity-purified polyclonal rabbit anti-(rat PAH) antibodies. The enzyme expressed in the pET system was subject to limited proteolysis by host cell proteases and was difficult to purify with a satisfactory yield. By contrast, when expressed as a fusion protein in the pMAL system, hPAH was resistant to cleavage by host cell proteases and was conveniently purified by affinity chromatography on an amylose resin. Catalytically active tetramer-dimer (in equilibrium) forms of the fusion protein were separated from inactive, aggregated forms by size-exclusion h.p.l.c. After cleavage by restriction protease, factor Xa or enterokinase, hPAH was separated from uncleaved fusion protein, MBP and restriction proteases by hydroxylapatite or ion-exchange (DEAE) chromatography. The yield of highly purified hPAH was approx. 10 mg/l of culture. The specific activity of the isolated recombinant enzyme was high (i.e. 1440 nmol of tyrosine.min-1.mg-1 with tetrahydrobiopterin as the cofactor) and its catalytic and physicochemical properties are essentially the same as those reported for the enzyme isolated from human liver. The recombinant enzyme, both as a fusion protein and as purified full-length hPAH, was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase. The phosphorylated from of hPAH electrophoretically displayed an apparently higher molecular mass (approximately 51 kDa) than the non-phosphorylated (approximately 50 kDa) form.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Endopeptidasas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Expresión Génica , Proteínas de Transporte de Monosacáridos , Fenilalanina Hidroxilasa/genética , Secuencia de Aminoácidos , Western Blotting , Proteínas Portadoras/genética , Fenómenos Químicos , Química Física , AMP Cíclico/farmacología , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Humanos , Cinética , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Peso Molecular , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA