Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38428410

RESUMEN

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Asunto(s)
Linfoma Folicular , Humanos , Linfocitos B , Linfoma Folicular/genética , Multiómica , Estudios Prospectivos , Recurrencia , Microambiente Tumoral , Ensayos Clínicos como Asunto
2.
Blood ; 142(26): 2282-2295, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774374

RESUMEN

ABSTRACT: The spatial anatomy of hematopoiesis in the bone marrow (BM) has been extensively studied in mice and other preclinical models, but technical challenges have precluded a commensurate exploration in humans. Institutional pathology archives contain thousands of paraffinized BM core biopsy tissue specimens, providing a rich resource for studying the intact human BM topography in a variety of physiologic states. Thus, we developed an end-to-end pipeline involving multiparameter whole tissue staining, in situ imaging at single-cell resolution, and artificial intelligence-based digital whole slide image analysis and then applied it to a cohort of disease-free samples to survey alterations in the hematopoietic topography associated with aging. Our data indicate heterogeneity in marrow adipose tissue (MAT) content within each age group and an inverse correlation between MAT content and proportions of early myeloid and erythroid precursors, irrespective of age. We identify consistent endosteal and perivascular positioning of hematopoietic stem and progenitor cells (HSPCs) with medullary localization of more differentiated elements and, importantly, uncover new evidence of aging-associated changes in cellular and vascular morphologies, microarchitectural alterations suggestive of foci with increased lymphocytes, and diminution of a potentially active megakaryocytic niche. Overall, our findings suggest that there is topographic remodeling of human hematopoiesis associated with aging. More generally, we demonstrate the potential to deeply unravel the spatial biology of normal and pathologic human BM states using intact archival tissue specimens.


Asunto(s)
Inteligencia Artificial , Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Células Madre Hematopoyéticas/patología , Médula Ósea/patología , Hematopoyesis/fisiología , Envejecimiento
3.
Metabolites ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295895

RESUMEN

Plant samples are potential sources of physiologically active secondary metabolites and their classification is an extremely important task in traditional medicine and other fields of research. In the production of herbal drugs, different plant parts of the same or related species can serve as adulterants for primary plant material. The use of highly informative and relatively easily accessible tools, such as liquid chromatography and low-resolution mass spectrometry, helps to solve these tasks by means of fingerprint analysis. In this study, to reveal specific plant part features for 20 species from one family (Apiaceae), and to preserve the maximum information content, two approaches are suggested. In both cases, minimal raw data pretreatment, including rescaling of time and m/z axes and cutting off some uninformative regions, was applied. For the support vector machine (SVM) method, tensor unfolding was required, while neural networks (NNs) were able to work directly with squared heatmaps as input data. Moreover, five data augmentation variants are proposed, to overcome the typical problem of a lack of data. As a result, a comparable F1-score close to 0.75 was achieved by SVM and two employed NN architectures. Eight marker compounds belonging to chlorophylls, lipids, and coumarin apio-glucosides were tentatively identified as characteristic of their corresponding sample groups: roots, stems, leaves, and fruits. The proposed approaches are simple, information-saving and can be applied to a broad type of tasks in metabolomics.

4.
Cell Rep ; 40(7): 111180, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977503

RESUMEN

Intratumor heterogeneity (ITH) represents a major challenge for anticancer therapies. An integrated, multidimensional, multiregional approach dissecting ITH of the clear cell renal cell carcinoma (ccRCC) tumor microenvironment (TME) is employed at the single-cell level with mass cytometry (CyTOF), multiplex immunofluorescence (MxIF), and single-nucleus RNA sequencing (snRNA-seq) and at the bulk level with whole-exome sequencing (WES), RNA-seq, and methylation profiling. Multiregional analyses reveal unexpected conservation of immune composition within each individual patient, with profound differences among patients, presenting patient-specific tumor immune microenvironment signatures despite underlying genetic heterogeneity from clonal evolution. Spatial proteogenomic TME analysis using MxIF identifies 14 distinct cellular neighborhoods and, conversely, demonstrated architectural heterogeneity among different tumor regions. Tumor-expressed cytokines are identified as key determinants of the TME and correlate with clinical outcome. Overall, this work signifies that spatial ITH occurs in ccRCC, which may drive clinical heterogeneity and warrants further interrogation to improve patient outcomes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Citocinas/genética , Heterogeneidad Genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Análisis de la Célula Individual , Microambiente Tumoral/genética
5.
Cancer Cell ; 40(8): 879-894.e16, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944503

RESUMEN

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.


Asunto(s)
Neoplasias , Transcriptoma , Algoritmos , Linfocitos T CD8-positivos , Humanos , Aprendizaje Automático , Neoplasias/genética , RNA-Seq , Análisis de Secuencia de ARN , Microambiente Tumoral/genética
6.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34244308

RESUMEN

BACKGROUND: Neoantigen (NeoAg) peptides displayed at the tumor cell surface by human leukocyte antigen molecules show exquisite tumor specificity and can elicit T cell mediated tumor rejection. However, few NeoAgs are predicted to be shared between patients, and none to date have demonstrated therapeutic value in the context of vaccination. METHODS: We report here a phase I trial of personalized NeoAg peptide vaccination (PPV) of 24 stage III/IV non-small cell lung cancer (NSCLC) patients who had previously progressed following multiple conventional therapies, including surgery, radiation, chemotherapy, and tyrosine kinase inhibitors (TKIs). Primary endpoints of the trial evaluated feasibility, tolerability, and safety of the personalized vaccination approach, and secondary trial endpoints assessed tumor-specific immune reactivity and clinical responses. Of the 16 patients with epidermal growth factor receptor (EGFR) mutations, nine continued TKI therapy concurrent with PPV and seven patients received PPV alone. RESULTS: Out of 29 patients enrolled in the trial, 24 were immunized with personalized NeoAg peptides. Aside from transient rash, fatigue and/or fever observed in three patients, no other treatment-related adverse events were observed. Median progression-free survival and overall survival of the 24 vaccinated patients were 6.0 and 8.9 months, respectively. Within 3-4 months following initiation of PPV, seven RECIST-based objective clinical responses including one complete response were observed. Notably, all seven clinical responders had EGFR-mutated tumors, including four patients that had continued TKI therapy concurrently with PPV. Immune monitoring showed that five of the seven responding patients demonstrated vaccine-induced T cell responses against EGFR NeoAg peptides. Furthermore, two highly shared EGFR mutations (L858R and T790M) were shown to be immunogenic in four of the responding patients, all of whom demonstrated increases in peripheral blood neoantigen-specific CD8+ T cell frequencies during the course of PPV. CONCLUSIONS: These results show that personalized NeoAg vaccination is feasible and safe for advanced-stage NSCLC patients. The clinical and immune responses observed following PPV suggest that EGFR mutations constitute shared, immunogenic neoantigens with promising immunotherapeutic potential for large subsets of NSCLC patients. Furthermore, PPV with concurrent EGFR inhibitor therapy was well tolerated and may have contributed to the induction of PPV-induced T cell responses.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Vacunas contra el Cáncer/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación
7.
Cancer Cell ; 39(6): 845-865.e7, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34019806

RESUMEN

The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Neoplasias/etiología , Neoplasias/terapia , Microambiente Tumoral/inmunología , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Visualización de Datos , Bases de Datos Factuales , Perfilación de la Expresión Génica/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Neoplasias/mortalidad , Neoplasias/patología , Medicina de Precisión , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Resultado del Tratamiento , Microambiente Tumoral/genética
8.
Clin Cancer Res ; 27(12): 3478-3490, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33771855

RESUMEN

PURPOSE: Multiparametric MRI (mpMRI) has become an indispensable radiographic tool in diagnosing prostate cancer. However, mpMRI fails to visualize approximately 15% of clinically significant prostate cancer (csPCa). The molecular, cellular, and spatial underpinnings of such radiographic heterogeneity in csPCa are unclear. EXPERIMENTAL DESIGN: We examined tumor tissues from clinically matched patients with mpMRI-invisible and mpMRI-visible csPCa who underwent radical prostatectomy. Multiplex immunofluorescence single-cell spatial imaging and gene expression profiling were performed. Artificial intelligence-based analytic algorithms were developed to examine the tumor ecosystem and integrate with corresponding transcriptomics. RESULTS: More complex and compact epithelial tumor architectures were found in mpMRI-visible than in mpMRI-invisible prostate cancer tumors. In contrast, similar stromal patterns were detected between mpMRI-invisible prostate cancer and normal prostate tissues. Furthermore, quantification of immune cell composition and tumor-immune interactions demonstrated a lack of immune cell infiltration in the malignant but not in the adjacent nonmalignant tissue compartments, irrespective of mpMRI visibility. No significant difference in immune profiles was detected between mpMRI-visible and mpMRI-invisible prostate cancer within our patient cohort, whereas expression profiling identified a 24-gene stromal signature enriched in mpMRI-invisible prostate cancer. Prostate cancer with strong stromal signature exhibited a favorable survival outcome within The Cancer Genome Atlas prostate cancer cohort. Notably, five recurrences in the 8 mpMRI-visible patients with csPCa and no recurrence in the 8 clinically matched patients with mpMRI-invisible csPCa occurred during the 5-year follow-up post-prostatectomy. CONCLUSIONS: Our study identified distinct molecular, cellular, and structural characteristics associated with mpMRI-visible csPCa, whereas mpMRI-invisible tumors were similar to normal prostate tissue, likely contributing to mpMRI invisibility.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Inteligencia Artificial , Ecosistema , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Proteómica
9.
Cancer Discov ; 11(6): 1468-1489, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33541860

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease. Transcriptomic and genetic characterization of DLBCL has increased the understanding of its intrinsic pathogenesis and provided potential therapeutic targets. However, the role of the microenvironment in DLBCL biology remains less understood. Here, we performed a transcriptomic analysis of the microenvironment of 4,655 DLBCLs from multiple independent cohorts and described four major lymphoma microenvironment categories that associate with distinct biological aberrations and clinical behavior. We also found evidence of genetic and epigenetic mechanisms deployed by cancer cells to evade microenvironmental constraints of lymphoma growth, supporting the rationale for implementing DNA hypomethylating agents in selected patients with DLBCL. In addition, our work uncovered new therapeutic vulnerabilities in the biochemical composition of the extracellular matrix that were exploited to decrease DLBCL proliferation in preclinical models. This novel classification provides a road map for the biological characterization and therapeutic exploitation of the DLBCL microenvironment. SIGNIFICANCE: In a translational relevant transcriptomic-based classification, we characterized the microenvironment as a critical component of the B-cell lymphoma biology and associated it with the DLBCL clinical behavior establishing a novel opportunity for targeting therapies.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Linfoma de Células B Grandes Difuso/genética , Perfilación de la Expresión Génica , Humanos , Linfoma de Células B Grandes Difuso/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA