Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-38409476

RESUMEN

In-hospital mortality associated with cardiogenic shock (CS) remains high despite the use of percutaneous assist devices. We sought to determine whether support with VA-ECMO or Impella in patients with CS alters specific components of the plasma proteome. Plasma samples were collected before device implantation and 72 h after initiation of support in 11 CS patients receiving ECMO or Impella. SOMAscan was used to detect 1305 circulating proteins. Sixty-seven proteins were changed after ECMO (18 upregulated and 49 downregulated, p < 0.05), 38 after Impella (10 upregulated and 28 downregulated, p < 0.05), and only eight proteins were commonly affected. Despite minimal protein overlap, both devices were associated with markers of reduced inflammation and increased apoptosis of inflammatory cells. In summary, ECMO and Impella are associated with reduced expression of inflammatory markers and increased markers of inflammatory cell death. These circulating proteins may serve as novel targets of therapy or biomarkers to tailor AMCS use.

3.
Circulation ; 149(17): 1341-1353, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38235580

RESUMEN

BACKGROUND: Cardiolipin is a mitochondrial-specific phospholipid that maintains integrity of the electron transport chain (ETC) and plays a central role in myocardial ischemia/reperfusion injury. Tafazzin is an enzyme that is required for cardiolipin maturation. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) use to provide hemodynamic support for acute myocardial infarction has grown exponentially, is associated with poor outcomes, and is under active clinical investigation, yet the mechanistic effect of VA-ECMO on myocardial damage in acute myocardial infarction remains poorly understood. We hypothesized that VA-ECMO acutely depletes myocardial cardiolipin and exacerbates myocardial injury in acute myocardial infarction. METHODS: We examined cardiolipin and tafazzin levels in human subjects with heart failure and healthy swine exposed to VA-ECMO and used a swine model of closed-chest myocardial ischemia/reperfusion injury to evaluate the effect of VA-ECMO on cardiolipin expression, myocardial injury, and mitochondrial function. RESULTS: Cardiolipin and tafazzin levels are significantly reduced in the left ventricles of individuals requiring VA-ECMO compared with individuals without VA-ECMO before heart transplantation. Six hours of exposure to VA-ECMO also decreased left ventricular levels of cardiolipin and tafazzin in healthy swine compared with sham controls. To explore whether cardiolipin depletion by VA-ECMO increases infarct size, we performed left anterior descending artery occlusion for a total of 120 minutes followed by 180 minutes of reperfusion in adult swine in the presence and absence of MTP-131, an amphipathic molecule that interacts with cardiolipin to stabilize the inner mitochondrial membrane. Compared with reperfusion alone, VA-ECMO activation beginning after 90 minutes of left anterior descending artery occlusion increased infarct size (36±8% versus 48±7%; P<0.001). VA-ECMO also decreased cardiolipin and tafazzin levels, disrupted mitochondrial integrity, reduced electron transport chain function, and promoted oxidative stress. Compared with reperfusion alone or VA-ECMO before reperfusion, delivery of MTP-131 before VA-ECMO activation reduced infarct size (22±8%; P=0.03 versus reperfusion alone and P<0.001 versus VA-ECMO alone). MTP-131 restored cardiolipin and tafazzin levels, stabilized mitochondrial function, and reduced oxidative stress in the left ventricle. CONCLUSIONS: We identified a novel mechanism by which VA-ECMO promotes myocardial injury and further identify cardiolipin as an important target of therapy to reduce infarct size and to preserve mitochondrial function in the setting of VA-ECMO for acute myocardial infarction.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38064044

RESUMEN

The functional role of TGFß type I receptor, activin-like kinase (ALK)-1 in post-myocardial infarction (MI) cardiac remodeling is unknown. We hypothesize that reduced ALK1 activity reduces survival and promotes cardiac fibrosis after MI. MI was induced in wild-type (WT), and ALK+/- mice by left coronary ligation. After 14 days ALK1+/- mice had reduced survival with a higher rate of cardiac rupture compared to WT mice. ALK1+/- left ventricles (LVs) had increased volumes at the end of systole and at the end of diastole. After MI ALK1+/- LVs had increased profibrotic SMAD3 signaling, type 1 collagen, and fibrosis as well as increased levels of TGFß1 co-receptor, endoglin, VEGF, and ALK1 ligands BMP9 and BMP10. ALK1+/- LVs had decreased levels of stromal-derived factor 1α. These data identify the critical role of ALK1 in post-MI survival and cardiac remodeling and implicate ALK1 as a potential therapeutic target to improve survival after MI.

5.
JACC Basic Transl Sci ; 8(10): 1318-1330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38094696

RESUMEN

No studies have explored a functional role for bone morphogenetic protein (BMP)-9, a transforming growth factor-ß superfamily ligand, in cardiac remodeling after myocardial infarction (MI). Using BMP-9 null mice, we observed that loss of BMP-9 decreases survival and increases cardiac rupture after MI. We further observed that loss of BMP-9 not only increases collagen abundance, but also promotes matrix metalloproteinase-9 activity and collagen degradation after MI. These findings identify BMP-9 as a necessary component of cardiac remodeling after MI and a potentially important target of therapy to improve outcomes after MI.

6.
JACC Basic Transl Sci ; 8(7): 769-780, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547066

RESUMEN

Whether extracorporeal membrane oxygenation (ECMO) with Impella, known as EC-Pella, limits cardiac damage in acute myocardial infarction remains unknown. The authors now report that the combination of transvalvular unloading and ECMO (EC-Pella) initiated before reperfusion reduced infarct size compared with ECMO alone before reperfusion in a preclinical model of acute myocardial infarction. EC-Pella also reduced left ventricular pressure-volume area when transvalvular unloading was applied before, not after, activation of ECMO. The authors further observed that EC-Pella increased cardioprotective signaling but failed to rescue mitochondrial dysfunction compared with ECMO alone. These findings suggest that ECMO can increase infarct size in acute myocardial infarction and that EC-Pella can mitigate this effect but also suggest that left ventricular unloading and myocardial salvage may be uncoupled in the presence of ECMO in acute myocardial infarction. These observations implicate mechanisms beyond hemodynamic load as part of the injury cascade associated with ECMO in acute myocardial infarction.

8.
J Cardiovasc Transl Res ; 15(2): 207-216, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782857

RESUMEN

New mechanistic insight into how the kidney responds to cardiac injury during acute myocardial infarction (AMI) is required. We hypothesized that AMI promotes inflammation and matrix metalloproteinase-9 (MMP9) activity in the kidney and studied the effect of initiating an Impella CP or veno-arterial extracorporeal membrane oxygenation (VA-ECMO) before coronary reperfusion during AMI. Adult male swine were subjected to coronary occlusion and either reperfusion (ischemia-reperfusion; IR) or support with either Impella or VA-ECMO before reperfusion. IR and ECMO increased while Impella reduced levels of MMP-9 in the myocardial infarct zone, circulation, and renal cortex. Compared to IR, Impella reduced myocardial infarct size and urinary KIM-1 levels, but VA-ECMO did not. IR and VA-ECMO increased pro-fibrogenic signaling via transforming growth factor-beta and endoglin in the renal cortex, but Impella did not. These findings identify that AMI increases inflammatory activity in the kidney, which may be attenuated by Impella support.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Corazón Auxiliar , Infarto del Miocardio , Animales , Masculino , Metaloproteinasa 9 de la Matriz , Choque Cardiogénico , Porcinos
9.
J Cardiovasc Transl Res ; 14(3): 476-483, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33078375

RESUMEN

In-hospital mortality associated with cardiogenic shock (CS) remains high despite introduction of mechanical circulatory support. In this study, we aimed to investigate whether systemic inflammation is associated with clinical outcomes in CS. We retrospectively analyzed systemic cytokine levels and the neutrophil-to-lymphocyte ratio (NLR), a marker of low-grade inflammation, among 134 patients with CS supported by VA-ECMO or Impella. Sixty-one percent of patients survived CS and either underwent device explantation or were bridged to LVAD or cardiac transplant. IL6 was the predominant circulating cytokine. IL6 levels were reduced after circulatory support in survivors. NLR pre-device implantation was significantly lower in patients with earlier stages of cardiogenic shock. Compared with non-survivors, survivors had a lower pre-device NLR and NLR was independently predictive of survival after adjusting for other covariates. In summary, NLR is a widely available marker of inflammation and correlates with in-hospital mortality among patients with cardiogenic shock requiring percutaneous mechanical circulatory support. Graphical Abstract Survivors present with lower NLR levels prior to percutaneous device implantation. Both survivors and non survivors present with elevated IL6 levels. IL6 levels decrease after percutaneous support (ECMO or Impella) only in survivors and continue to rise in non-survivors.


Asunto(s)
Citocinas/sangre , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Inflamación/diagnóstico , Linfocitos , Neutrófilos , Oxigenadores de Membrana , Choque Cardiogénico/terapia , Anciano , Biomarcadores/sangre , Femenino , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/fisiopatología , Mortalidad Hospitalaria , Humanos , Inflamación/sangre , Inflamación/mortalidad , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Diseño de Prótesis , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Índice de Severidad de la Enfermedad , Choque Cardiogénico/diagnóstico , Choque Cardiogénico/mortalidad , Choque Cardiogénico/fisiopatología , Factores de Tiempo , Resultado del Tratamiento
10.
J Am Coll Cardiol ; 76(6): 684-699, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32762903

RESUMEN

BACKGROUND: Myocardial damage due to acute ST-segment elevation myocardial infarction (STEMI) remains a significant global health problem. New approaches to limit myocardial infarct size and reduce progression to heart failure after STEMI are needed. Mechanically reducing left ventricular (LV) workload (LV unloading) before coronary reperfusion is emerging as a potential approach to reduce infarct size. OBJECTIVES: Given the central importance of mitochondria in reperfusion injury, we hypothesized that compared with immediate reperfusion (IR), LV unloading before reperfusion improves myocardial energy substrate use and preserves mitochondrial structure and function. METHODS: To explore the effect of LV unloading duration on infarct size, we analyzed data from the STEMI-Door to Unload (STEMI-DTU) trial and then tested the effect of LV unloading on ischemia and reperfusion injury, cardiac metabolism, and mitochondrial function in swine models of acute myocardial infarction. RESULTS: The duration of LV unloading before reperfusion was inversely associated with infarct size in patients with large anterior STEMI. In preclinical models, LV unloading reduced the expression of hypoxia-sensitive proteins and myocardial damage due to ischemia alone. LV unloading with a transvalvular pump (TV-P) but not with venoarterial extracorporeal membrane oxygenation (ECMO) reduced infarct size. Using unbiased and blinded metabolic profiling, TV-P improved myocardial energy substrate use and preserved mitochondrial structure including cardiolipin content after reperfusion compared with IR or ECMO. Functional testing in mitochondria isolated from the infarct zone showed an intact mitochondrial structure including cardiolipin content, preserved activity of the electron transport chain including mitochondrial complex I, and reduced oxidative stress with TV-P-supported reperfusion but not with IR or ECMO. CONCLUSIONS: These novel findings identify that transvalvular unloading limits ischemic injury before reperfusion, improves myocardial energy substrate use, and preserves mitochondrial structure and function after reperfusion.


Asunto(s)
Reperfusión Miocárdica/métodos , Cuidados Preoperatorios/métodos , Infarto del Miocardio con Elevación del ST/cirugía , Animales , Válvulas Cardíacas , Ventrículos Cardíacos/fisiopatología , Corazón Auxiliar , Masculino , Infarto del Miocardio con Elevación del ST/fisiopatología , Porcinos
11.
J Am Heart Assoc ; 8(22): e013586, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31698989

RESUMEN

Background Unloading the left ventricle and delaying reperfusion reduces infarct size in preclinical models of acute myocardial infarction. We hypothesized that a potential explanation for this effect is that left ventricular (LV) unloading before reperfusion increases collateral blood flow to ischemic myocardium. Methods and Results Acute myocardial infarction was induced by balloon occlusion of the left anterior descending artery for 120 minutes in adult swine, followed by reperfusion for 180 minutes. After 90 minutes of occlusion, animals were assigned to 30 minutes of continued occlusion (n=6) or to 30 minutes of support with either an Impella CP (n=4) or venoarterial extracorporeal membrane oxygenation (n=5) with persistent occlusion. The primary end point was measures of microcirculatory blood flow including the collateral flow index (CFI) during left anterior descending artery occlusion as (Pw-RA)/(Pa-RA), where Pa, Pw, and RA are aortic, coronary wedge, and right atrial pressure, respectively. Infarct size was quantified using triphenyltetrazolium chloride. Compared with continued occlusion, Impella, not venoarterial extracorporeal membrane oxygenation, reduced infarct size relative to the area at risk. Before reperfusion, Impella reduced LV stroke work by 25% and increased the CFI by 75%, but venoarterial extracorporeal membrane oxygenation did not. Among all groups, the change in CFI between 90 and 120 minutes correlated inversely with the change in LV stroke work (r2=0.44, P=0.01) and infarct size (r2=0.41, P=0.02). Conclusions We report for the first time that 30 minutes of LV unloading during coronary occlusion increases the CFI, which correlates inversely with LV stroke work and infarct size. Venoarterial extracorporeal membrane oxygenation failed to increase the CFI and did not reduce infarct size.


Asunto(s)
Circulación Asistida/métodos , Circulación Colateral , Circulación Coronaria , Oxigenación por Membrana Extracorpórea/métodos , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Reperfusión Miocárdica , Miocardio/patología , Animales , Cateterismo Cardíaco , Cateterismo de Swan-Ganz , Vasos Coronarios , Corazón Auxiliar , Masculino , Microcirculación , Daño por Reperfusión Miocárdica/terapia , Presión , Índice de Severidad de la Enfermedad , Sus scrofa , Función Ventricular Izquierda
12.
J Cardiovasc Transl Res ; 12(2): 87-94, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31016553

RESUMEN

Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality. Pioneering preclinical work reported by Peter Maroko and Eugene Braunwald in 1971 identified oxygen supply and demand are primary determinants of myocardial infarct size in the setting of a heart attack. Since the 1950s, advances in mechanical engineering led to the development of short-term circulatory support devices that range from pulsatile to continuous flow pumps. The primary objective of these pumps is to reduce native heart work, enhance coronary blood flow, and sustain systemic perfusion. Whether these pumps could reduce myocardial infarct size in the setting of AMI became an intense focus for preclinical investigation with variable animal models, experimental algorithms, and pump platforms being tested. In this review, we discuss the design of these preclinical studies and the evolution of mechanical support platforms and attempt to translate these experimental methods into clinical trials.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , Corazón Auxiliar , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión Miocárdica , Miocardio/metabolismo , Consumo de Oxígeno , Implantación de Prótesis/instrumentación , Función Ventricular Izquierda , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Reperfusión Miocárdica/efectos adversos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Diseño de Prótesis , Implantación de Prótesis/efectos adversos , Recuperación de la Función , Factores de Riesgo , Resultado del Tratamiento
14.
Antioxid Redox Signal ; 29(6): 603-612, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29320870

RESUMEN

SIGNIFICANCE: Redox signaling is a common mechanism in the cellular response toward a variety of stimuli. For analyzing redox-dependent specific alterations in a cell, genetically encoded biosensors were highly instrumental in the past. To advance the knowledge about the importance of this signaling mechanism in vivo, models that are as close as possible to physiology are needed. Recent Advances: The development of transgenic (tg) redox biosensor animal models has enhanced the knowledge of redox signaling under patho(physio)logical conditions. So far, commonly used small animal models, that is, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio, and genetically modified mice were employed for redox biosensor transgenesis. However, especially the available mouse models are still limited. CRITICAL ISSUES: The analysis of redox biosensor responses in vivo at the tissue level, especially for internal organs, is hampered by the detection limit of the available redox biosensors and microscopy techniques. Recent technical developments such as redox histology and the analysis of cell-type-specific biosensor responses need to be further refined and followed up in a systematic manner. FUTURE DIRECTIONS: The usage of tg animal models in the field of redox signaling has helped to answer open questions. Application of the already established models and consequent development of more defined tg models will enable this research area to define the role of redox signaling in (patho)physiology in further depth. Antioxid. Redox Signal. 29, 603-612.


Asunto(s)
Técnicas Biosensibles , Imagen Molecular , Oxidación-Reducción , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Drosophila melanogaster , Expresión Génica , Genes Reporteros , Ratones , Imagen Molecular/métodos , Especificidad de Órganos/genética , Organismos Modificados Genéticamente , Plantas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal
15.
Cell Death Dis ; 8(8): e2976, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28796258

RESUMEN

Macrophages are essential for the inflammatory response after an ischemic insult and thereby influence tissue recovery. For the oxygen sensing prolyl-4-hydroxylase domain enzyme (PHD) 2 a clear impact on the macrophage-mediated arteriogenic response after hind-limb ischemia has been demonstrated previously, which involves fine tuning a M2-like macrophage population. To analyze the role of PHD3 in macrophages, we performed hind-limb ischemia (ligation and excision of the femoral artery) in myeloid-specific PHD3 knockout mice (PHD3-/-) and analyzed the inflammatory cell invasion, reperfusion recovery and fibrosis in the ischemic muscle post-surgery. In contrast to PHD2, reperfusion recovery and angiogenesis was unaltered in PHD3-/- compared to WT mice. Macrophages from PHD3-/- mice showed, however, a dampened inflammatory reaction in the affected skeletal muscle tissues compared to WT controls. This was associated with a decrease in fibrosis and an anti-inflammatory phenotype of the PHD3-/- macrophages, as well as decreased expression of Cyp2s1 and increased PGE2-secretion, which could be mimicked by PHD3-/- bone marrow-derived macrophages in serum starvation.


Asunto(s)
Fibrosis/enzimología , Fibrosis/fisiopatología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Inflamación/enzimología , Inflamación/fisiopatología , Isquemia/enzimología , Isquemia/fisiopatología , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Miembro Posterior , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Inflamación/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Noqueados
16.
Mol Cell Biol ; 37(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795296

RESUMEN

The prolyl-4-hydroxylase domain (PHD) enzymes are regarded as the molecular oxygen sensors. There is an interplay between oxygen availability and cellular metabolism, which in turn has significant effects on the functionality of innate immune cells, such as macrophages. However, if and how PHD enzymes affect macrophage metabolism are enigmatic. We hypothesized that macrophage metabolism and function can be controlled via manipulation of PHD2. We characterized the metabolic phenotypes of PHD2-deficient RAW cells and primary PHD2 knockout bone marrow-derived macrophages (BMDM). Both showed typical features of anaerobic glycolysis, which were paralleled by increased pyruvate dehydrogenase kinase 1 (PDK1) protein levels and a decreased pyruvate dehydrogenase enzyme activity. Metabolic alterations were associated with an impaired cellular functionality. Inhibition of PDK1 or knockout of hypoxia-inducible factor 1α (HIF-1α) reversed the metabolic phenotype and impaired the functionality of the PHD2-deficient RAW cells and BMDM. Taking these results together, we identified a critical role of PHD2 for a reversible glycolytic reprogramming in macrophages with a direct impact on their function. We suggest that PHD2 serves as an adjustable switch to control macrophage behavior.


Asunto(s)
Glucólisis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Macrófagos/citología , Animales , Línea Celular , Reprogramación Celular , Técnicas de Inactivación de Genes , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal
17.
Circ Res ; 119(9): 1004-1016, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27553648

RESUMEN

RATIONALE: Changes in redox potentials of cardiac myocytes are linked to several cardiovascular diseases. Redox alterations are currently mostly described qualitatively using chemical sensors, which however do not allow quantifying redox potentials, lack specificity, and the possibility to analyze subcellular domains. Recent advances to quantitatively describe defined redox changes include the application of genetically encoded redox biosensors. OBJECTIVE: Establishment of mouse models, which allow the quantification of the glutathione redox potential (EGSH) in the cytoplasm and the mitochondrial matrix of isolated cardiac myocytes and in Langendorff-perfused hearts based on the use of the redox-sensitive green fluorescent protein 2, coupled to the glutaredoxin 1 (Grx1-roGFP2). METHODS AND RESULTS: We generated transgenic mice with cardiac myocyte-restricted expression of Grx1-roGFP2 targeted either to the mitochondrial matrix or to the cytoplasm. The response of the roGFP2 toward H2O2, diamide, and dithiothreitol was titrated and used to determine the EGSH in isolated cardiac myocytes and in Langendorff-perfused hearts. Distinct EGSH were observed in the cytoplasm and the mitochondrial matrix. Stimulation of the cardiac myocytes with isoprenaline, angiotensin II, or exposure to hypoxia/reoxygenation additionally underscored that these compartments responded independently. A compartment-specific response was also observed 3 to 14 days after myocardial infarction. CONCLUSIONS: We introduce redox biosensor mice as a new tool, which allows quantification of defined alterations of EGSH in the cytoplasm and the mitochondrial matrix in cardiac myocytes and can be exploited to answer questions in basic and translational cardiovascular research.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Corazón/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Oxidación-Reducción , Consumo de Oxígeno/fisiología
18.
J Leukoc Biol ; 96(3): 365-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24626957

RESUMEN

On a molecular level, cells sense changes in oxygen availability through the PHDs, which regulate the protein stability of the α-subunit of the transcription factor HIF. Especially, PHD3 has been additionally associated with apoptotic cell death. We hypothesized that PHD3 plays a role in cell-fate decisions in macrophages. Therefore, myeloid-specific PHD3(-/-) mice were created and analyzed. PHD3(-/-) BMDM showed no altered HIF-1α or HIF-2α stabilization or increased HIF target gene expression in normoxia or hypoxia. Macrophage M1 and M2 polarization was unchanged likewise. Compared with macrophages from WT littermates, PHD3(-/-) BMDM exhibited a significant reduction in TUNEL-positive cells after serum withdrawal or treatment with stauro and SNAP. Under the same conditions, PHD3(-/-) BMDM also showed less Annexin V staining, which is representative for membrane disruption, and indicated a reduced early apoptosis. In an unbiased transcriptome screen, we found that Angptl2 expression was reduced in PHD3(-/-) BMDM under stress conditions. Addition of rAngptl2 rescued the antiapoptotic phenotype, demonstrating that it is involved in the PHD3-mediated response toward apoptotic stimuli in macrophages.


Asunto(s)
Macrófagos/citología , Procolágeno-Prolina Dioxigenasa/fisiología , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/biosíntesis , Angiopoyetinas/genética , Angiopoyetinas/farmacología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Células de la Médula Ósea/citología , Hipoxia de la Célula , Células Cultivadas , Regulación de la Expresión Génica , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/enzimología , FN-kappa B/metabolismo , Procolágeno-Prolina Dioxigenasa/deficiencia , Procolágeno-Prolina Dioxigenasa/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Estaurosporina/farmacología , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA