Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 86: 127511, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39216433

RESUMEN

This study highlights the potential neurotoxic and impaired behavioral effects associated with high fluoride concentrations in drinking water. PURPOSE: Fluoride is known to cause neurotoxicity, evinced by lower I.Q. levels in children from high-fluoride regions as compared to those in low-fluoride regions. Thus, the present study was designed to investigate the molecular mechanism behind the neurological and behavioural changes induced by sodium fluoride in Wistar rats. MATERIAL AND METHODS: A total of 24 female Wistar rats, aged six weeks and weighing approximately 150-220 g, were randomly divided into three groups: Group I (control) received reverse osmosis (R.O.) water, Group II received Sodium Fluoride (NaF) at 10 ppm, and Group III received NaF at 50 ppm in their drinking water for 60 days. The animals underwent behavioural tests including the Forced Swim Test (F.S.T.), Open Field Test (OFT), and Novel Object Recognition Test (N.O.R.T.), to assess any alterations in behaviour. After 60 days, the animals were euthanized, and their blood and brain samples were analysed to evaluate biochemical changes by Western Blot/I.H.C. analysis of B.A.X., Bcl2, LC3B, TLR4, PARP1, p53, Caspase, α-Synuclein, PARKIN, NeuN, KI67, DNM-1, and M.F.N. for assessing molecular pathways for toxicity. RESULTS: Impaired locomotion, memory impairment, and behaviour resembling depression in the animals were evinced by reduced mobility index in the F.S.T., discrimination index in the N.O.R.T., and reduced locomotor activity in the open field test results. Additionally, alterations in antioxidant levels and oxidative stress parameters were observed in the brain. The expression levels of various apoptotic and inflammatory biomarkers (B.A.X., Bcl2, TLR4, PARP1, p53, and Caspase) showed apoptosis in neurons. The confocal studies showed increased expression of inflammatory (α-Synuclein, PARKIN), apoptotic (LC3B, B.A.X., p53, KI67), and mitochondrial dysfunction (NeuN, DNM-1, M.F.N.) markers in fluoride-treated animals. Toxicity was more prominent in 50 ppm of fluoride-treated animals. CONCLUSION: Fluoride showed potent neuronal toxicity as evidenced by alterations of various molecular markers.

2.
Biomed Rep ; 20(6): 97, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765862

RESUMEN

There is a lack of treatment for the detrimental effects of fluorosis. Sodium fluoride at a concentration of 10 ppm induces stress, depression and memory impairment in adult Wistar rats. Naringin, a flavanone glycoside isolated from citrus fruits such as lemons and oranges, possesses anti-inflammatory, antioxidant and neuroprotective properties; therefore, it was used for treatment of fluoride induced toxicity in the present study. Adult Wistar rats were divided into eight groups (n=8). The normal control (NOR) group was provided with normal tap water. The sodium fluoride (FLU)10 group received water containing 10 ppm sodium fluoride for 60 days. The treatment groups (FLU10NAR100 and FLU10NAR50) received drinking water with 10 ppm sodium fluoride ad libitum along with Naringin 100 and 50 mg/kg body weight (bw) per oral gavage, respectively. The NAR100 and NAR50 groups received Naringin 100 and 50 mg/kg bw. The PRONAR100 and PRONAR50 groups received Naringin 100 and 50 mg/kg bw for the first 15 days and then subsequently received FLU10 ppm for 60 days (total of 75 days). All animals were subjected to behavioural tests consisting of the open field test (OFT), forced swim test (FST) and novel object recognition test (NORT). After euthanasia, the hippocampus and prefrontal cortex were stained with Cresyl violet. To measure the oxidative stress caused by fluoride and its effect on antioxidant levels, estimation of reduced glutathione (GSH) by Ellman's method, lipid peroxidation (LPO) measured in terms of the MDA:thiobarbituric acid reaction and catalase was performed. To evaluate the effect of fluoride on activity of acetylcholine, estimation of acetylcholinesterase (AChE) by Ellman's method was performed. In NORT and FST, significant changes (P<0.05) were present in the FLU10NAR100 and FLU10NAR50 groups compared with the FLU10 group, showing recovery from memory deficit and depression. The OFT results were insignificant. The LPO was reduced in all the other groups except the FLU10 group, with statistically significant changes. Catalase activity was significantly lower in FLU10 as compared with the NAR100, NAR50, PRONAR100 and PRONAR50 groups. GSH and AChE activities did not show significant changes as compared with the FLU10 group. The CA3 and prefrontal cortex viable and degenerated neuron count in the FLU10 group were insignificant compared with all other groups, except for the NAR100 and NAR50 groups. Thus, Naringin can be a useful drug to avoid the neurological effects of fluoride.

3.
Toxicol Mech Methods ; 34(2): 214-235, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37921264

RESUMEN

Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.


Asunto(s)
Fluoruros , Fluorosis Dental , Humanos , Fluoruros/toxicidad , Fluorosis Dental/epidemiología , Fluorosis Dental/etiología , Fluorosis Dental/prevención & control , Salud Pública , Fluoruración/efectos adversos
4.
Biol Trace Elem Res ; 202(3): 835-849, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37300595

RESUMEN

Fluoride is present everywhere in nature. The primary way that individuals are exposed to fluoride is by drinking water. It's interesting to note that while low fluoride levels are good for bone and tooth growth, prolonged fluoride exposure is bad for human health. Additionally, preclinical studies link oxidative stress, inflammation, and programmed cell death to fluoride toxicity. Moreover, mitochondria play a crucial role in the production of reactive oxygen species (ROS). On the other hand, little is known about fluoride's impact on mitophagy, biogenesis, and mitochondrial dynamics. These actions control the growth, composition, and organisation of mitochondria, and the purification of mitochondrial DNA helps to inhibit the production of reactive oxygen species and the release of cytochrome c, which enables cells to survive the effects of fluoride poisoning. In this review, we discuss the different pathways involved in mitochondrial toxicity and dysfunction induced by fluoride. For therapeutic approaches, we discussed different phytochemical and pharmacological agents which reduce the toxicity of fluoride via maintained by imbalanced cellular processes, mitochondrial dynamics, and scavenging the ROS.


Asunto(s)
Fluoruros , Enfermedades Mitocondriales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fluoruros/toxicidad , Fluoruros/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Apoptosis , Enfermedades Mitocondriales/metabolismo
5.
Neuroreport ; 34(9): 449-456, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161984

RESUMEN

Fluorosis is widespread in several areas of the world and including India leading to dental and skeletal fluorosis as well as neurological manifestations. With a limited number of treatment options available, we have tried to address the issue with a nutraceutical such as naringin which is an alkaloid derived from the citrus fruit. Naringin is a potent antioxidant and has neuroprotective action which can counteract the redox imbalance induced by sodium fluoride ingestion. Neurological effects of fluorosis were evaluated in Wistar rats by open field test (OFT) and novel object recognition test (NORT) along with lipid peroxidation (LPO) and glutathione estimation in brain homogenate and cresyl violet staining of CA3 neurons in the hippocampus. Animals were divided into groups namely, normal, vehicle, fluoride, naringin 100 mg/kg bd.wt group and fluoride with naringin (FLU-NAR) group. Fluorosis was induced by providing 100 ppm of sodium fluoride ad libitum in drinking water for 30 days and prophylactic treatment of naringin for 15 days per oral. OFT, NORT and forced swim test showed significant (P ≤ 0.05) changes in the FLU-NAR group as compared to the fluoride group indicating behavioral changes in the fluoride group and positive changes in the FLU-NAR group with attenuation of stress, fear, hyperactivity and memory impairment. The decrease in LPO and increase in glutathione levels in the treatment group compared to the fluoride group were supported by histological improvement as compared to the fluoride group. Prophylactic treatment of naringin showed its possible neuroprotective effect, thus giving an alternative treatment strategy to deal with neurological manifestations of fluorosis.


Asunto(s)
Fármacos Neuroprotectores , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fluoruros/toxicidad , Ratas Wistar , Fluoruro de Sodio/toxicidad , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA