Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Anal Chim Acta ; 1321: 342998, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39155094

RESUMEN

BACKGROUND: Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. RESULTS: We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 = 0.99) between 0.4 µM and 25 µM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. SIGNIFICANCE: The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.


Asunto(s)
1-Octanol , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , 1-Octanol/química , Animales , Técnicas Analíticas Microfluídicas/instrumentación , Nanotecnología , Ácido gamma-Aminobutírico/análisis , Acetilcolina/análisis , Ratas , Dispositivos Laboratorio en un Chip , Tamaño de la Partícula
2.
J Biol Chem ; 300(8): 107556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002683

RESUMEN

Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.


Asunto(s)
Aplysia , Isoformas de Proteínas , Animales , Aplysia/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/genética , Taquicininas/metabolismo , Taquicininas/genética , Secuencia de Aminoácidos , Transducción de Señal , Empalme Alternativo , Humanos
3.
J Biol Chem ; 300(7): 107458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857862

RESUMEN

The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A. californica, and B. taurus tissues. These enzymes are both tissue and substrate-specific across all three organisms. Notably, the lungs of the mammalian species, and the central nervous system of the mollusk displayed the highest isomerase activity among the examined tissues. In vitro enzymatic conversion was observed for several endogenous peptides, such as the tetrapeptide GFFD in A. californica, and mammalian neuropeptide FF in R. norvegicus and B. taurus. To understand their mode of action, we explored the effects of several inhibitors on these enzymes, which suggest common active site residues. While further characterization of these enzymes is required, the investigations emphasize a widespread and overlooked enzyme activity related to the creation of bioactive peptides.


Asunto(s)
Oligopéptidos , Animales , Especificidad por Sustrato , Oligopéptidos/química , Oligopéptidos/metabolismo , Isomerasas/metabolismo , Isomerasas/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos
4.
NMR Biomed ; : e5161, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38715469

RESUMEN

Achieving high-resolution and high signal-to-noise ratio (SNR) in vivo metabolic imaging via fast magnetic resonance spectroscopic imaging (MRSI) has been a longstanding challenge. This study combines the methods of relaxation enhancement (RE) and subspace imaging for the first time, enabling high-resolution and high-SNR in vivo MRSI of rodent brains at 9.4 T. Specifically, an RE-based chemical shift imaging sequence, which combines a frequency-selective pulse to excite only the metabolite frequencies with minimum perturbation of the water spins and a pair of adiabatic pulses to spatially localize the slice of interest, is designed and evaluated in vivo. This strategy effectively shortens the apparent T1 of metabolites, thereby increasing the SNR during relatively short repetition time ((TR) compared with acquisitions with only spatially selective wideband excitations, and does not require water suppression. The SNR was further enhanced via a state-of-the-art subspace reconstruction method. A novel subspace learning strategy tailored for 9.4 T and RE acquisitions is developed. In vivo, high-resolution (e.g., voxel size of 0.6 × 0.6 × 1.5 mm3) MRSI of both healthy mouse brains and a glioma-bearing mouse brain in 12.5 min has been demonstrated.

5.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683978

RESUMEN

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Exosomas , Músculo Esquelético , Exosomas/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Fibronectinas/metabolismo , Neuronas Motoras/metabolismo , Interleucina-6/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Neuronas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Mioquinas
6.
Methods Mol Biol ; 2758: 151-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549013

RESUMEN

Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.


Asunto(s)
Neuropéptidos , Proteómica , Perfilación de la Expresión Génica , Hormonas/metabolismo , Biología Computacional/métodos , Neuropéptidos/genética , Neuropéptidos/metabolismo
7.
Methods Mol Biol ; 2758: 227-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549017

RESUMEN

D-amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches. Here we describe a method for the identification of DAACPs that can be used to systematically survey peptides extracted from a tissue sample in a nontargeted manner.


Asunto(s)
Aminoácidos , Cromatografía Líquida con Espectrometría de Masas , Animales , Aminoácidos/química , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Péptidos
8.
J Proteome Res ; 23(6): 1883-1893, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38497708

RESUMEN

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.


Asunto(s)
Espectrometría de Masas , Proteómica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Proteómica/métodos , Humanos , Espectrometría de Masas/métodos , Proteoma/análisis
9.
Nat Methods ; 21(3): 521-530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38366241

RESUMEN

Spatial omics technologies can reveal the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive biochemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping using MEISTER, an integrative experimental and computational mass spectrometry (MS) framework. Our framework integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating three-dimensional (3D) molecular distributions and a data integration method fitting cell-specific mass spectra to 3D datasets. We imaged detailed lipid profiles in tissues with millions of pixels and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future development of multiscale technologies for biochemical characterization of the brain.


Asunto(s)
Aprendizaje Profundo , Ratas , Animales , Espectrometría de Masas/métodos , Encéfalo , Lípidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
10.
Methods ; 224: 21-34, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295894

RESUMEN

Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.


Asunto(s)
Bacterias , Biopelículas , Espectrometría de Masas , Bacterias/genética , Diagnóstico por Imagen
11.
FEBS Lett ; 598(6): 591-601, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243373

RESUMEN

Multimodal mass spectrometry (MMS) incorporates an imaging modality with probe-based mass spectrometry (MS) to enable precise, targeted data acquisition and provide additional biological and chemical data not available by MS alone. Two categories of MMS are covered; in the first, an imaging modality guides the MS probe to target individual cells and to reduce acquisition time by automatically defining regions of interest. In the second category, imaging and MS data are coupled in the data analysis pipeline to increase the effective spatial resolution using a higher resolution imaging method, correct for tissue deformation, and incorporate fine morphological features in an MS imaging dataset. Recent methodological and computational developments are covered along with their application to single-cell and imaging analyses.


Asunto(s)
Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Análisis de la Célula Individual/métodos
12.
J Am Soc Mass Spectrom ; 35(1): 106-113, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38016044

RESUMEN

Glycation is a spontaneous and nonenzymatic glycosylation. Glycated albumin (GA), which serves as an important biomarker in plasma in the diagnosis and characterization of diabetes, can be passively filtered from the plasma to tears. Tears are important targets for research in clinical diagnostics due to the ability to collect this biofluid noninvasively and repeatably. Therefore, the analysis of GA in tear film provides information for monitoring diabetes progression independent of blood pathologies. Due to the limited volume (1-5 µL) of natural tear film, we developed a small volume assay using a nano liquid chromatography-trapped ion mobility spectrometry-time-of-flight MS (nanoLC-timsTOF) platform for the analysis of glycated albumin in human plasma and tear films affected by diabetes. The peptides containing lysine 525, which is the main glycation site in GA, were relatively quantified and represented as the GA level. The results of the measurements showed that GA levels were significantly higher in diabetes-affected plasma and tears compared to controls with a p-value < 0.01. A strong correlation of glycated albumin levels was observed for the plasma and tear film in diabetes samples (Pearson coefficient 0.92 with a p-value 0.0012). Moreover, the number of GA glycation sites was significantly higher in diabetes-affected plasma and tear comparatively to controls. Among all the glycation sites in plasma albumin, the GA level quantified by lysine 136/137 had a strong correlation with more commonly used lysine 525, suggesting that lysine 136 /137 is an alternative diabetes biomarker in plasma. Overall, our findings demonstrate GA in tears as a biomarker for monitoring diabetes progression, highlighting new possibilities for quick and noninvasive diabetes detection and monitoring.


Asunto(s)
Diabetes Mellitus , Lisina , Humanos , Albúmina Sérica Glicada , Productos Finales de Glicación Avanzada , Hemoglobina Glucada , Albúmina Sérica/análisis , Albúmina Sérica/química , Biomarcadores , Glucemia/análisis
13.
Chembiochem ; 25(5): e202300849, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116888

RESUMEN

Engineering efficient biocatalysts is essential for metabolic engineering to produce valuable bioproducts from renewable resources. However, due to the complexity of cellular metabolic networks, it is challenging to translate success in vitro into high performance in cells. To meet such a challenge, an accurate and efficient quantification method is necessary to screen a large set of mutants from complex cell culture and a careful correlation between the catalysis parameters in vitro and performance in cells is required. In this study, we employed a mass-spectrometry based high-throughput quantitative method to screen new mutants of 2-pyrone synthase (2PS) for triacetic acid lactone (TAL) biosynthesis through directed evolution in E. coli. From the process, we discovered two mutants with the highest improvement (46 fold) in titer and the fastest kcat (44 fold) over the wild type 2PS, respectively, among those reported in the literature. A careful examination of the correlation between intracellular substrate concentration, Michaelis-Menten parameters and TAL titer for these two mutants reveals that a fast reaction rate under limiting intracellular substrate concentrations is important for in-cell biocatalysis. Such properties can be tuned by protein engineering and synthetic biology to adopt these engineered proteins for the maximum activities in different intracellular environments.


Asunto(s)
Compuestos de Boro , Cloranfenicol/análogos & derivados , Escherichia coli , Pironas , Escherichia coli/genética , Catálisis , Biocatálisis , Espectrometría de Masas
14.
Anal Chem ; 95(48): 17425, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050675
15.
ACS Omega ; 8(50): 47723-47734, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144114

RESUMEN

The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.

16.
Bio Protoc ; 13(21): e4862, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37969752

RESUMEN

High-throughput molecular screening of microbial colonies and DNA libraries are critical procedures that enable applications such as directed evolution, functional genomics, microbial identification, and creation of engineered microbial strains to produce high-value molecules. A promising chemical screening approach is the measurement of products directly from microbial colonies via optically guided matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Measuring the compounds from microbial colonies bypasses liquid culture with a screen that takes approximately 5 s per sample. We describe a protocol combining a dedicated informatics pipeline and sample preparation method that can prepare up to 3,000 colonies in under 3 h. The screening protocol starts from colonies grown on Petri dishes and then transferred onto MALDI plates via imprinting. The target plate with the colonies is imaged by a flatbed scanner and the colonies are located via custom software. The target plate is coated with MALDI matrix, MALDI-MS analyzes the colony locations, and data analysis enables the determination of colonies with the desired biochemical properties. This workflow screens thousands of colonies per day without requiring additional automation. The wide chemical coverage and the high sensitivity of MALDI-MS enable diverse screening projects such as modifying enzymes and functional genomics surveys of gene activation/inhibition libraries. Key features • Mass spectrometry analyzes a range of compounds from E. coli colonies as a proxy for liquid culture testing enzyme mutant libraries. • Colonies are transferred to a MALDI target plate by a simple imprinting method. • The screen compares the ratio among several products or searches for the qualitative presence of specific compounds. • The protocol requires a MALDI mass spectrometer.

17.
ACS Appl Bio Mater ; 6(11): 4914-4921, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37878954

RESUMEN

Rhamnolipids are surfactants produced by many Pseudomonad bacteria, including the species Pseudomonas aeruginosa. These rhamnolipids are known to aid and enable numerous phenotypic traits that improve the survival of the bacteria that make them. These surfactants are also important for industrial products ranging from pharmaceuticals to cleaning supplies to cosmetics, to name a few. Rhamnolipids have structural diversity that leads to an array of congeners; however, little is known about the localization and distribution of these congeners in two-dimensional space. Differential distribution of congeners can reduce the uniformity of applications in industrial settings and create heterogeneity within biological communities. We examined the distribution patterns of combinations of rhamnolipids in commercially available mixtures, cell-free spent media, and colony biofilms using mass spectrometry. We found that even in the absence of cells, congeners exhibit different distribution patterns, leading to different rhamnolipid congener distributions on a surface. Congeners with shorter fatty acid chains were more centrally located, while longer chains were more heterogeneous and distally located. We found that congeners with similar structures can distribute differently. Within developing colony biofilms, we found rhamnolipid distribution patterns differed from cell-free environments, lacking simple trends noted in cell-free environments. Most strikingly, we found the distribution patterns of individual congeners in the colony biofilms to be diverse. We note that the congener distribution is far from homogeneous but composed of numerous local microenvironments of varied rhamnolipid congener composition.


Asunto(s)
Glucolípidos , Pseudomonas aeruginosa , Glucolípidos/química , Biopelículas , Bacterias , Tensoactivos/química
18.
Commun Biol ; 6(1): 851, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587187

RESUMEN

Microbiome-derived metabolites are important for the microbiome-gut-brain axis and the discovery of new disease treatments. D-Alanine (D-Ala) is found in many animals as a potential co-agonist of the N-methyl-D-aspartate receptors (NMDAR), receptors widely used in the nervous and endocrine systems. The gut microbiome, diet and putative endogenous synthesis are the potential sources of D-Ala in animals, although there is no direct evidence to show the distribution and racemization of gut-absorbed L-/D-Ala with regards to host-microbe interactions in mammals. In this work, we utilized germ-free mice to control the interference from microbiota and isotopically labeled L-/D-Ala to track their biodistribution and racemization in vivo. Results showed time-dependent biodistribution of gut-absorbed D-Ala, particularly accumulation of gut-absorbed D-Ala in pancreatic tissues, brain, and pituitary. No endogenous synthesis of D-Ala via racemization was observed in germ-free mice. The sources of D-Ala in mice were revealed as microbiota and diet, but not endogenous racemization. This work indicates the importance of further investigating the in vivo biological functions of gut-microbiome derived D-Ala, particularly on NMDAR-related activities, for D-Ala as a potential signaling molecules in the microbiome-gut-brain axis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Distribución Tisular , Eje Cerebro-Intestino , Alanina , Receptores de N-Metil-D-Aspartato , Mamíferos
19.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37398021

RESUMEN

Elucidating the spatial-biochemical organization of the brain across different scales produces invaluable insight into the molecular intricacy of the brain. While mass spectrometry imaging (MSI) provides spatial localization of compounds, comprehensive chemical profiling at a brain-wide scale in three dimensions by MSI with single-cell resolution has not been achieved. We demonstrate complementary brain-wide and single-cell biochemical mapping via MEISTER, an integrative experimental and computational mass spectrometry framework. MEISTER integrates a deep-learning-based reconstruction that accelerates high-mass-resolving MS by 15-fold, multimodal registration creating 3D molecular distributions, and a data integration method fitting cell-specific mass spectra to 3D data sets. We imaged detailed lipid profiles in tissues with data sets containing millions of pixels, and in large single-cell populations acquired from the rat brain. We identified region-specific lipid contents, and cell-specific localizations of lipids depending on both cell subpopulations and anatomical origins of the cells. Our workflow establishes a blueprint for future developments of multiscale technologies for biochemical characterization of the brain.

20.
Chem Sci ; 14(22): 5936-5944, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293657

RESUMEN

Growing evidence supports the confident association between distinct amyloid beta (Aß) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aß toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aß42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d-isomerized Aß as natural mimics, ranging from fragments containing a single d residue to full length Aß42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co-d-epimerization at Asp and Ser residues within Aß42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aß42 secondary structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA