Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36151740

RESUMEN

Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain.


Asunto(s)
Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas , Descubrimiento de Drogas , Conocimiento , Almacenamiento y Recuperación de la Información
2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3070-3080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35939454

RESUMEN

The drug discovery and development process is a long and expensive one, costing over 1 billion USD on average per drug and taking 10-15 years. To reduce the high levels of attrition throughout the process, there has been a growing interest in applying machine learning methodologies to various stages of drug discovery and development in the recent decade, especially at the earliest stage - identification of druggable disease genes. In this paper, we have developed a new tensor factorisation model to predict potential drug targets (genes or proteins) for treating diseases. We created a three-dimensional data tensor consisting of 1,048 gene targets, 860 diseases and 230,011 evidence attributes and clinical outcomes connecting them, using data extracted from the Open Targets and PharmaProjects databases. We enriched the data with gene target representations learned from a drug discovery-oriented knowledge graph and applied our proposed method to predict the clinical outcomes for unseen gene target and disease pairs. We designed three evaluation strategies to measure the prediction performance and benchmarked several commonly used machine learning classifiers together with Bayesian matrix and tensor factorisation methods. The result shows that incorporating knowledge graph embeddings significantly improves the prediction accuracy and that training tensor factorisation alongside a dense neural network outperforms all other baselines. In summary, our framework combines two actively studied machine learning approaches to disease target identification, namely tensor factorisation and knowledge graph representation learning, which could be a promising avenue for further exploration in data-driven drug discovery.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas , Teorema de Bayes , Redes Neurales de la Computación , Descubrimiento de Drogas
3.
BMC Bioinformatics ; 22(1): 377, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289807

RESUMEN

BACKGROUND: Data integration to build a biomedical knowledge graph is a challenging task. There are multiple disease ontologies used in data sources and publications, each having its hierarchy. A common task is to map between ontologies, find disease clusters and finally build a representation of the chosen disease area. There is a shortage of published resources and tools to facilitate interactive, efficient and flexible cross-referencing and analysis of multiple disease ontologies commonly found in data sources and research. RESULTS: Our results are represented as a knowledge graph solution that uses disease ontology cross-references and facilitates switching between ontology hierarchies for data integration and other tasks. CONCLUSIONS: Grakn core with pre-installed "Disease ontologies for knowledge graphs" facilitates the biomedical knowledge graph build and provides an elegant solution for the multiple disease ontologies problem.


Asunto(s)
Ontologías Biológicas , Etnicidad , Humanos , Almacenamiento y Recuperación de la Información , Conocimiento , Reconocimiento de Normas Patrones Automatizadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA