Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4059, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906726

RESUMEN

A reliable assessment of forest carbon sequestration depends on our understanding of wood ecophysiology. Within a forest, trees exhibit different timings and rates of growth during wood formation. However, their relationships with wood anatomical traits remain partially unresolved. This study evaluated the intra-annual individual variability in growth traits in balsam fir [Abies balsamea (L.) Mill.]. We collected wood microcores weekly from April to October 2018 from 27 individuals in Quebec (Canada) and prepared anatomical sections to assess wood formation dynamics and their relationships with the anatomical traits of the wood cells. Xylem developed in a time window ranging from 44 to 118 days, producing between 8 and 79 cells. Trees with larger cell production experienced a longer growing season, with an earlier onset and later ending of wood formation. On average, each additional xylem cell lengthened the growing season by 1 day. Earlywood production explained 95% of the variability in xylem production. More productive individuals generated a higher proportion of earlywood and cells with larger sizes. Trees with a longer growing season produced more cells but not more biomass in the wood. Lengthening the growing season driven by climate change may not lead to enhanced carbon sequestration from wood production.


Asunto(s)
Abies , Picea , Humanos , Madera , Estaciones del Año , Secuestro de Carbono , Xilema , Árboles
2.
Ann Bot ; 130(6): 811-824, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36018569

RESUMEN

BACKGROUND AND AIMS: Upscaling carbon allocation requires knowledge of the variability at the scales at which data are collected and applied. Trees exhibit different growth rates and timings of wood formation. However, the factors explaining these differences remain undetermined, making samplings and estimations of the growth dynamics a complicated task, habitually based on technical rather than statistical reasons. This study explored the variability in xylem phenology among 159 balsam firs [Abies balsamea (L.) Mill.]. METHODS: Wood microcores were collected weekly from April to October 2018 in a natural stand in Quebec, Canada, to detect cambial activity and wood formation timings. We tested spatial autocorrelation, tree size and cell production rates as explanatory variables of xylem phenology. We assessed sample size and margin of error for wood phenology assessment at different confidence levels. KEY RESULTS: Xylem formation lasted between 40 and 110 d, producing between 12 and 93 cells. No effect of spatial proximity or size of individuals was detected on the timings of xylem phenology. Trees with larger cell production rates showed a longer growing season, starting xylem differentiation earlier and ending later. A sample size of 23 trees produced estimates of xylem phenology at a confidence level of 95 % with a margin of error of 1 week. CONCLUSIONS: This study highlighted the high variability in the timings of wood formation among trees within an area of 1 km2. The correlation between the number of new xylem cells and the growing season length suggests a close connection between the processes of wood formation and carbon sequestration. However, the causes of the observed differences in xylem phenology remain partially unresolved. We point out the need to carefully consider sample size when assessing xylem phenology to explore the reasons underlying this variability and to allow reliable upscaling of carbon allocation in forests.


Asunto(s)
Abies , Picea , Tamaño de la Muestra , Xilema , Cámbium , Árboles , Madera , Estaciones del Año , Carbono
3.
Tree Physiol ; 40(12): 1639-1647, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32705120

RESUMEN

Late frost can cause damage to trees, especially to the developing bud of broadleaf species in spring. Through long-term adaptation, plants adjust leaf phenology to achieve an optimal trade-off between growing season length and frost avoidance. In this study, we aim to assess ecotypic differentiation in leaf development of sugar maple populations planted in a common garden. A total of 272 sugar maple seedlings from 29 Canadian provenances were planted at the northern boundary of the natural range, and the phenological phases of bud and leaf development were monitored during spring 2019. The wide geographical area under evaluation showed a complex seasonal pattern of temperature, with spring warming occurring later in the north and close to the sea. Overall, leaf development lasted between 20 and 36 days, from the end of May to end of June. We observed different timings and rates of leaf development among provenances, demonstrating the occurrence of ecotypes in this species. Minimum April temperatures of the original sites were able to explain such differences, while maximum April temperatures were not significant. Seedlings from sites with colder minimum April temperatures completed leaf development earlier and faster. On average, leaf development diverged by up to 6 days among provenances, with minimum April temperatures ranging from -3 to 3 °C. Our results demonstrated that the avoidance of late spring frost is a driving force of leaf development in sugar maple populations. In the colder sites, the growing season is a limiting factor for tree growth. Thus, when thermal conditions become favorable in spring, an earlier growth reactivation and high metabolic activity ensure a fast leaf emission, which maximizes the period available for photosynthesis and growth. These patterns demonstrate the long-term phenological adaptation of sugar maple populations to local climatic conditions and suggest the importance of frost events for leaf development.


Asunto(s)
Acer , Canadá , Hojas de la Planta , Estaciones del Año , Temperatura , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA