RESUMEN
The maintenance of a diverse and non-homogeneous lipid composition in cell membranes is crucial for a multitude of cellular processes. One important example is transbilayer lipid asymmetry, which refers to a difference in lipid composition between the two leaflets of a cellular membrane. Transbilayer asymmetry is especially pronounced at the plasma membrane, where at resting state, negatively-charged phospholipids such as phosphatidylserine (PS) are almost exclusively restricted to the cytosolic leaflet, whereas sphingolipids are mostly found in the exoplasmic leaflet. Transbilayer movement of lipids is inherently slow, and for a fast cellular response, for example during apoptosis, transmembrane proteins termed scramblases facilitate the movement of polar/charged lipid headgroups through the membrane interior. In recent years, an expanding number of proteins from diverse families have been suggested to possess a lipid scramblase activity. Members of TMEM16 and XKR proteins have been implicated in blood clotting and apoptosis, whereas the scrambling activity of ATG9 and TMEM41B/VMP1 proteins contributes to the synthesis of autophagosomal membrane during autophagy. Structural studies, in vitro reconstitution of lipid scrambling, and molecular dynamics simulations have significantly advanced our understanding of the molecular mechanisms of lipid scrambling and helped delineate potential lipid transport pathways through the membrane. A number of examples also suggest that lipid scrambling activity can be combined with another activity, as is the case for TMEM16 proteins, which also function as ion channels, rhodopsin in the photoreceptor membrane, and possibly other G-protein coupled receptors.
RESUMEN
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement: Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
RESUMEN
The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.
Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , ARN de Transferencia de Serina , Medicago truncatula/genética , Medicago truncatula/microbiología , Bacterias , Fijación del Nitrógeno/fisiología , Estilo de Vida , Nitrógeno , Ribonucleasas , Simbiosis/fisiologíaRESUMEN
The interaction between legumes and bacteria of rhizobia type results in a beneficial symbiotic relationship characterized by the formation of new root organs, called nodules. Within these nodules the bacteria, released in plant cells, differentiate into bacteroids and fix atmospheric nitrogen through the nitrogenase activity. This mutualistic interaction has evolved sophisticated signaling networks to allow rhizobia entry, colonization, bacteroid differentiation and persistence in nodules. Nodule cysteine rich (NCR) peptides, reactive oxygen species (ROS), reactive nitrogen species (RNS), and toxin-antitoxin (TA) modules produced by the host plants or bacterial microsymbionts have a major role in the control of the symbiotic interaction. These molecules described as weapons in pathogenic interactions have evolved to participate to the intracellular bacteroid accommodation by escaping control of plant innate immunity and adapt the functioning of the nitrogen-fixation to environmental signalling cues.
RESUMEN
BACKGROUND: Interactions between pathogenic oomycetes and microbiota residing on the surface of the host plant root are unknown, despite being critical to inoculum constitution. The nature of these interactions was explored for the polyphagous and telluric species Phytophthora parasitica. RESULTS: Composition of the rhizospheric microbiota of Solanum lycopersicum was characterized using deep re-sequencing of 16S rRNA gene to analyze tomato roots either free of or partly covered with P. parasitica biofilm. Colonization of the host root surface by the oomycete was associated with a shift in microbial community involving a Bacteroidetes/Proteobacteria transition and Flavobacteriaceae as the most abundant family. Identification of members of the P. parasitica-associated microbiota interfering with biology and oomycete infection was carried out by screening for bacteria able to (i) grow on a P. parasitica extract-based medium (ii), exhibit in vitro probiotic or antibiotic activity towards the oomycete (iii), have an impact on the oomycete infection cycle in a tripartite interaction S. lycopersicum-P. parasitica-bacteria. One Pseudomonas phylotype was found to exacerbate disease symptoms in tomato plants. The lack of significant gene expression response of P. parasitica effectors to Pseudomonas suggested that the increase in plant susceptibility was not associated with an increase in virulence. Our results reveal that Pseudomonas spp. establishes commensal interactions with the oomycete. Bacteria preferentially colonize the surface of the biofilm rather than the roots, so that they can infect plant cells without any apparent infection of P. parasitica. CONCLUSIONS: The presence of the pathogenic oomycete P. parasitica in the tomato rhizosphere leads to a shift in the rhizospheric microbiota composition. It contributes to the habitat extension of Pseudomonas species mediated through a physical association between the oomycete and the bacteria.