Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Insect Physiol ; 132: 104272, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34186071

RESUMEN

Alterations in cell number and size are apparently associated with the body mass differences between species and sexes, but we rarely know which of the two mechanisms underlies the observed variance in body mass. We used phylogenetically informed comparisons of males and females of 19 Carabidae beetle species to compare body mass, resting metabolic rate, and cell size in the ommatidia and Malpighian tubules. We found that the larger species or larger sex (males or females, depending on the species) consistently possessed larger cells in the two tissues, indicating organism-wide coordination of cell size changes in different tissues and the contribution of these changes to the origin of evolutionary and sex differences in body mass. The species or sex with larger cells also exhibited lower mass-specific metabolic rates, and the interspecific mass scaling of metabolism was negatively allometric, indicating that large beetles with larger cells spent relatively less energy on maintenance than small beetles. These outcomes also support existing hypotheses about the fitness consequences of cell size changes, postulating that the low surface-to-volume ratio of large cells helps decrease the energetic demand of maintaining ionic gradients across cell membranes. Analyses with and without phylogenetic information yielded similar results, indicating that the observed patterns were not biased by shared ancestry. Overall, we suggest that natural selection does not operate on each trait independently and that the linkages between concerted cell size changes in different tissues, body mass and metabolic rate should thus be viewed as outcomes of correlational selection.


Asunto(s)
Metabolismo Basal , Evolución Biológica , Tamaño Corporal , Tamaño de la Célula , Escarabajos , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Escarabajos/fisiología , Caracteres Sexuales
2.
Biology (Basel) ; 10(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919761

RESUMEN

Similar to humans, insects lose their physical and physiological capacities with age, which makes them a convenient study system for human ageing. Although insects have an efficient oxygen-transport system, we know little about how their flight capacity changes with age and environmental oxygen conditions. We measured two types of locomotor performance in ageing Drosophila melanogaster flies: the frequency of wing beats and the capacity to climb vertical surfaces. Flight performance was measured under normoxia and hypoxia. As anticipated, ageing flies showed systematic deterioration of climbing performance, and low oxygen impeded flight performance. Against predictions, flight performance did not deteriorate with age, and younger and older flies showed similar levels of tolerance to low oxygen during flight. We suggest that among different insect locomotory activities, flight performance deteriorates slowly with age, which is surprising, given that insect flight is one of the most energy-demanding activities in animals. Apparently, the superior capacity of insects to rapidly deliver oxygen to flight muscles remains little altered by ageing, but we showed that insects can become oxygen limited in habitats with a poor oxygen supply (e.g., those at high elevations) during highly oxygen-demanding activities such as flight.

3.
Ecol Evol ; 10(17): 9552-9566, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953083

RESUMEN

During development, cells may adjust their size to balance between the tissue metabolic demand and the oxygen and resource supply: Small cells may effectively absorb oxygen and nutrients, but the relatively large area of the plasma membrane requires costly maintenance. Consequently, warm and hypoxic environments should favor ectotherms with small cells to meet increased metabolic demand by oxygen supply. To test these predictions, we compared cell size (hindgut epithelium, hepatopancreas B cells, ommatidia) in common rough woodlice (Porcellio scaber) that were developed under four developmental conditions designated by two temperatures (15 or 22°C) and two air O2 concentrations (10% or 22%). To test whether small-cell woodlice cope better under increased metabolic demand, the CO2 production of each woodlouse was measured under cold, normoxic conditions and under warm, hypoxic conditions, and the magnitude of metabolic increase (MMI) was calculated. Cell sizes were highly intercorrelated, indicative of organism-wide mechanisms of cell cycle control. Cell size differences among woodlice were largely linked with body size changes (larger cells in larger woodlice) and to a lesser degree with oxygen conditions (development of smaller cells under hypoxia), but not with temperature. Developmental conditions did not affect MMI, and contrary to predictions, large woodlice with large cells showed higher MMI than small woodlice with small cells. We also observed complex patterns of sexual difference in the size of hepatopancreatic cells and the size and number of ommatidia, which are indicative of sex differences in reproductive biology. We conclude that existing theories about the adaptiveness of cell size do not satisfactorily explain the patterns in cell size and metabolic performance observed here in P. scaber. Thus, future studies addressing physiological effects of cell size variance should simultaneously consider different organismal elements that can be involved in sustaining the metabolic demands of tissue, such as the characteristics of gas-exchange organs and O2-binding proteins.

4.
J Therm Biol ; 90: 102600, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32479395

RESUMEN

Terrestrial isopods have evolved pleopodal lungs that provide access to the rich aerial supply of oxygen. However, isopods occupy conditions with wide and unpredictable thermal and oxygen gradients, suggesting that they might have evolved adaptive developmental plasticity in their respiratory organs to help meet metabolic demand over a wide range of oxygen conditions. To explore this plasticity, we conducted an experiment in which we reared common rough woodlice (Porcellio scaber) from eggs to maturation at different temperatures (15 and 22 °C) combined with different oxygen levels (10% and 22% O2). We sampled animals during development (only females) and then examined mature adults (both sexes). We compared woodlice between treatments with respect to the area of their pleopod exopodites (our proxy of lung size) and the shape of Bertalanffy's equations (our proxy of individual growth curves). Generally, males exhibited larger lungs than females relative to body size. Woodlice also grew relatively fast but achieved a decreased asymptotic body mass in response to warm conditions; the oxygen did not affect growth. Under hypoxia, growing females developed larger lungs compared to under normoxia, but only in the late stage of development. Among mature animals, this effect was present only in males. Woodlice reared under warm conditions had relatively small lungs, in both developing females (the effect was increased in relatively large females) and among mature males and females. Our results demonstrated that woodlice exhibit phenotypic plasticity in their lung size. We suggest that this plasticity helps woodlice equilibrate their gas exchange capacity to differences in the oxygen supply and metabolic demand along environmental temperature and oxygen gradients. The complex pattern of plasticity might indicate the effects of a balance between water conservation and oxygen uptake, which would be especially pronounced in mature females that need to generate an aqueous environment inside their brood pouch.


Asunto(s)
Adaptación Fisiológica , Isópodos/crecimiento & desarrollo , Pulmón/crecimiento & desarrollo , Oxígeno , Temperatura , Animales , Femenino , Isópodos/fisiología , Pulmón/fisiología , Masculino , Tamaño de los Órganos , Intercambio Gaseoso Pulmonar
5.
PLoS One ; 12(5): e0177827, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28542380

RESUMEN

High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Oxígeno/metabolismo , Termotolerancia/fisiología , Animales , Femenino , Calor , Hipoxia/fisiopatología , Masculino , Modelos Animales , Actividad Motora/fisiología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA