Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826457

RESUMEN

Protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.

2.
Mol Cancer ; 14: 101, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25944097

RESUMEN

BACKGROUND: Autophagy is a major cellular process by which cytoplasmic components such as damaged organelles and misfolded proteins are recycled. Although low levels of autophagy occur in cells under basal conditions, certain cellular stresses including nutrient depletion, DNA damage, and oxidative stress are known to robustly induce autophagy. Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor activated during oxidative stress to maintain genomic stability. Both autophagy and KLF4 play important roles in response to stress and function in tumor suppression. METHODS: To explore the role of KLF4 on autophagy in mouse embryonic fibroblasts (MEFs), we compared wild-type with Klf4 deficient cells. To determine the levels of autophagy, we starved MEFs for different times with Earle's balanced salts solution (EBSS). Rapamycin was used to manipulate mTOR activity and autophagy. The percentage of cells with γ-H2AX foci, a marker for DNA damage, and punctate pattern of GFP-LC3 were counted by confocal microscopy. The effects of the drug treatments, Klf4 overexpression, or Klf4 transient silencing on autophagy were analyzed using Western blot. Trypan Blue assay and flow cytometry were used to study cell viability and apoptosis, respectively. qPCR was also used to assay basal and the effects of Klf4 overexpression on Atg7 expression levels. RESULTS: Here our data suggested that Klf4 (-/-) MEFs exhibited impaired autophagy, which sensitized them to cell death under nutrient deprivation. Secondly, DNA damage in Klf4-null MEFs increased after treatment with EBSS and was correlated with increased apoptosis. Thirdly, we found that Klf4 (-/-) MEFs showed hyperactive mTOR activity. Furthermore, we demonstrated that rapamycin reduced the increased level of mTOR in Klf4 (-/-) MEFs, but did not restore the level of autophagy. Finally, re-expression of Klf4 in Klf4 deficient MEFs resulted in increased levels of LC3II, a marker for autophagy, and Atg7 expression level when compared to GFP-control transfected Klf4 (-/-) MEFs. CONCLUSION: Taken together, our results strongly suggest that KLF4 plays a critical role in the regulation of autophagy and suppression of mTOR activity. In addition, we showed that rapamycin decreased the level of mTOR in Klf4 (-/-) MEFs, but did not restore autophagy. This suggests that KLF4 regulates autophagy through both mTOR-dependent and independent mechanisms. Furthermore, for the first time, our findings provide novel insights into the mechanism by which KLF4 perhaps prevents DNA damage and apoptosis through activation of autophagy.


Asunto(s)
Apoptosis , Autofagia , Daño del ADN , Embrión de Mamíferos/citología , Fibroblastos/citología , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Modelos Biológicos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA