Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Cell ; 187(11): 2628-2632, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788686

RESUMEN

Glycans, with their variable compositions and highly dynamic conformations, vastly expand the heterogeneity of whatever factor or cell they are attached to. These properties make them crucial contributors to biological function and organismal health and also very difficult to study. That may be changing as we look to the future of glycobiology.


Asunto(s)
Glicómica , Polisacáridos , Animales , Humanos , Polisacáridos/metabolismo , Polisacáridos/química
4.
Mol Microbiol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37972006

RESUMEN

Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.

5.
mBio ; : e0273223, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38032212

RESUMEN

IMPORTANCE: In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.

6.
Glycobiology ; 33(3): 245-259, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36637425

RESUMEN

Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.


Asunto(s)
Adhesinas Bacterianas , Caries Dental , Humanos , Glicosilación , Adhesinas Bacterianas/genética , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Adhesión Bacteriana/fisiología , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Células Endoteliales/metabolismo , Proteínas Portadoras/genética , Colágeno/genética , División Celular
7.
Trends Microbiol ; 31(5): 453-467, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36411201

RESUMEN

To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.


Asunto(s)
Bacterias , Quimiotaxis , Humanos , Bacterias/metabolismo , Inflamación , Proteínas Bacterianas/metabolismo
8.
Front Mol Biosci ; 9: 1015771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250013

RESUMEN

Each microbe has the ability to produce a wide variety of sugar structures that includes some combination of glycolipids, glycoproteins, exopolysaccharides and oligosaccharides. For example, bacteria may synthesize lipooligosaccharides or lipopolysaccharides, teichoic and lipoteichoic acids, N- and O-linked glycoproteins, capsular polysaccharides, exopolysaccharides, poly-N-acetylglycosamine polymers, peptidoglycans, osmoregulated periplasmic glucans, trehalose or glycogen, just to name a few of the more broadly distributed carbohydrates that have been studied. The composition of many of these glycans are typically dissimilar from those described in eukaryotes, both in the seemingly endless repertoire of sugars that microbes are capable of synthesizing, and in the unique modifications that are attached to the carbohydrate residues. Furthermore, strain-to-strain differences in the carbohydrate building blocks used to create these glycoconjugates are the norm, and many strains possess additional mechanisms for turning on and off transferases that add specific monosaccharides and/or modifications, exponentially contributing to the structural heterogeneity observed by a single isolate, and preventing any structural generalization at the species level. In the past, a greater proportion of research effort was directed toward characterizing human pathogens rather than commensals or environmental isolates, and historically, the focus was on microbes that were simple to grow in large quantities and straightforward to genetically manipulate. These studies have revealed the complexity that exists among individual strains and have formed a foundation to better understand how other microbes, hosts and environments further transform the glycan composition of a single isolate. These studies also motivate researchers to further explore microbial glycan diversity, particularly as more sensitive analytical instruments and methods are developed to examine microbial populations in situ rather than in large scale from an enriched nutrient flask. This review emphasizes many of these points using the common foodborne pathogen Campylobacter jejuni as the model microbe.

9.
Infect Immun ; 90(5): e0068221, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35499339

RESUMEN

Human intelectin-1 (hIntL-1) is a secreted glycoprotein capable of binding exocyclic 1,2-diols within surface glycans of human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, and Helicobacter pylori. For the latter, lectin binding was shown to cause bacterial agglutination and increased phagocytosis, suggesting a role for hIntL-1 in pathogen surveillance. In this study, we investigated the interactions between hIntL-1 and S. pneumoniae, the leading cause of bacterial pneumonia. We show that hIntL-1 also agglutinates S. pneumoniae serotype 43, which displays an exocyclic 1,2-diol moiety in its capsular polysaccharide but is unable to kill in a complement-dependent manner or to promote bacterial killing by peripheral blood mononuclear cells. In contrast, hIntL-1 not only significantly increases serotype-specific S. pneumoniae killing by neutrophils but also enhances the attachment of these bacteria to A549 lung epithelial cells. Taken together, our results suggest that hIntL-1 participates in host surveillance through microbe sequestration and enhanced targeting to neutrophils.


Asunto(s)
Neutrófilos , Streptococcus pneumoniae , Citocinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Lectinas/metabolismo , Leucocitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Fagocitosis , Polisacáridos/metabolismo , Serogrupo , Streptococcus pneumoniae/metabolismo
10.
Front Microbiol ; 12: 734526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867850

RESUMEN

Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.

11.
ACS Chem Biol ; 16(11): 2690-2701, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34726367

RESUMEN

Campylobacter jejuni is a significant cause of human gastroenteritis worldwide, and all strains express an N-glycan that is added to at least 80 different proteins. We characterized 98 C. jejuni isolates from infants from 7 low- and middle-income countries and identified 4 isolates unreactive with our N-glycan-specific antiserum that was raised against the C. jejuni heptasaccharide composed of GalNAc-GalNAc-GalNAc(Glc)-GalNAc-GalNAc-diNAcBac. Mass spectrometric analyses indicated these isolates express a hexasaccharide lacking the glucose branch. Although all 4 strains encode the PglI glucosyltransferase (GlcTF), one aspartate in the DXDD motif was missing, an alteration also present in ∼4% of all available PglI sequences. Deleting this residue from an active PglI resulted in a nonfunctional GlcTF when the protein glycosylation system was reconstituted in E. coli, while replacement with Glu/Ala was not deleterious. Molecular modeling proposed a mechanism for how the DXDD residues and the structure/length beyond the motif influence activity. Mouse vaccination with an E. coli strain expressing the full-length heptasaccharide produced N-glycan-specific antibodies and a corresponding reduction in Campylobacter colonization and weight loss following challenge. However, the antibodies did not recognize the hexasaccharide and were unable to opsonize C. jejuni isolates lacking glucose, suggesting this should be considered when designing N-glycan-based vaccines to prevent campylobacteriosis.


Asunto(s)
Campylobacter jejuni/metabolismo , Glucosa/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/metabolismo , Glicosilación , Sueros Inmunes , Ratones , Fagocitosis , Polisacáridos/química , Alineación de Secuencia
12.
Viruses ; 13(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34696385

RESUMEN

Campylobacter jejuni is a Gram-negative foodborne pathogen that causes diarrheal disease and is associated with severe post-infectious sequelae. Bacteriophages (phages) are a possible means of reducing Campylobacter colonization in poultry to prevent downstream human infections. However, the factors influencing phage-host interactions must be better understood before this strategy can be predictably employed. Most studies have focused on Campylobacter phage binding to the host surface, with all phages classified as either capsule- or flagella-specific. Here we describe the characterization of a C. jejuni phage that requires functional flagellar glycosylation and motor genes for infection, without needing the flagella for adsorption to the cell surface. Through phage infectivity studies of targeted C. jejuni mutants, transcriptomic analysis of phage-resistant mutants, and genotypic and phenotypic analysis of a spontaneous phage variant capable of simultaneously overcoming flagellar gene dependence and sensitivity to oxidative stress, we have uncovered a link between oxidative stress, flagellar motility, and phage infectivity. Taken together, our results underscore the importance of understanding phage-host interactions beyond the cell surface and point to host oxidative stress state as an important and underappreciated consideration for future phage-host interaction studies.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Campylobacter jejuni/virología , Pollos/microbiología , Interacciones Microbiota-Huesped , Estrés Oxidativo , Animales , Campylobacter jejuni/fisiología , Flagelos , Perfilación de la Expresión Génica , Genotipo , Movimiento , Fenotipo , Secuenciación Completa del Genoma
13.
Glycobiology ; 31(11): 1520-1530, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34473830

RESUMEN

Acinetobacter baumannii has become a leading cause of bacterial nosocomial infections, in part, due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high-resolution magic angle spinning nuclear magnetic resonance and by noting high levels of this disaccharide, obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, osmoregulatory trehalose synthesis proteins A and B (△otsA and △otsB), we found that the trehalose-deficient △otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells, while trehalose-6-phosphate producing △otsB behaved similar to the wild-type. The △otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.


Asunto(s)
Acinetobacter baumannii/química , Permeabilidad de la Membrana Celular/genética , Monoéster Fosfórico Hidrolasas/genética , Polisacáridos/metabolismo , Trehalosa/metabolismo , Acinetobacter baumannii/patogenicidad , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Polisacáridos/deficiencia , Trehalosa/deficiencia , Trehalosa/genética , Virulencia
14.
Viruses ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34452516

RESUMEN

Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.


Asunto(s)
Acinetobacter/virología , Bacteriófagos/química , Bacteriófagos/genética , Cystoviridae/química , Cystoviridae/genética , Podoviridae/química , Podoviridae/genética , ARN Viral/genética , Acinetobacter/efectos de los fármacos , Antibacterianos/farmacología , Bacteriófagos/clasificación , Bacteriófagos/metabolismo , Cystoviridae/clasificación , Cystoviridae/metabolismo , Farmacorresistencia Bacteriana Múltiple , Cromatografía de Gases y Espectrometría de Masas , Genoma Viral , Filogenia , Podoviridae/clasificación , Podoviridae/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , ARN Viral/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
15.
Glycobiology ; 31(6): 664-666, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34213552
16.
Mol Microbiol ; 115(6): 1086-1093, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33434389

RESUMEN

The deoxyhexose sugar L-fucose is important for many biological processes within the human body and the associated microbiota. This carbohydrate is abundant in host gut mucosal surfaces, numerous microbial cell surface structures, and some dietary carbohydrates. Fucosylated oligosaccharides facilitate the establishment of a healthy microbiota and provide protection from infection. However, there are instances where pathogens can also exploit these fucosylated structures to cause infection. Furthermore, deficiencies in host fucosylation are associated with specific disease outcomes. This review focuses on our current understanding of the impact of fucosylation within the mucosal environment of the gastrointestinal tract with a specific emphasis on the mediatory effects in host-microbe interactions.


Asunto(s)
Bacterias/metabolismo , Fucosa/metabolismo , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Mucosa Intestinal/metabolismo , Animales , Carbohidratos de la Dieta/metabolismo , Tracto Gastrointestinal/fisiología , Glicosilación , Humanos , Ratones
17.
mBio ; 13(1): e0385221, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35100875

RESUMEN

Early in life, commensal bacteria play a major role in immune development, helping to guide the host response toward harmful stimuli while tolerating harmless antigens to prevent autoimmunity. Guillain-Barré syndrome (GBS) is an autoimmune disease caused by errant immune attack of antibody-bound ganglioside receptors on host nerve cells, resulting in paralysis. Lipooligosaccharides enveloping the prevalent enteric pathogen, Campylobacter jejuni, frequently mimic human gangliosides and can trigger GBS by stimulating the autoimmune response. In low- to middle-income countries, young children are consistently exposed to C. jejuni, and it is not known if this impacts GBS susceptibility later in life. Using a macrophage model, we examined the effect of training these cells with low doses of ganglioside-mimicking bacteria prior to challenge with GBS-associated antigens. This training caused decreased production of proinflammatory cytokines, suggesting tolerance induction. We then screened Campylobacter isolates from 154 infant fecal samples for GM1 ganglioside mimicry, finding that 23.4% of strains from both symptomatic and asymptomatic infants displayed GM1-like structures. Training macrophages with one of these asymptomatic carrier isolates also induced tolerance against GBS-associated antigens, supporting that children can be exposed to the tolerizing antigen early in life. RNA interference of Toll-like receptor 2 (TLR2) and TLR4 suggests that these receptors are not involved in tolerance associated with decreases in tumor necrosis factor (TNF), interleukin-6 (IL-6), or IL-1ß levels. The results of this study suggest that exposure to ganglioside-mimicking bacteria early in life occurs naturally and impacts host susceptibility to GBS development. IMPORTANCE In this study, we demonstrated that it is possible to tolerize immune cells to potentially dampen the autoreactive proinflammatory immune response against Guillain-Barré syndrome (GBS)-associated antigens. The innate immune response functions to arm the host against bacterial attack, but it can be tricked into recognizing the host's own cells when infectious bacteria display sugar structures that mimic human glycans. It is this errant response that leads to the autoimmunity and paralysis associated with GBS. By presenting immune cells with small amounts of the bacterial glycan mimic, we were able to suppress the proinflammatory immune response upon subsequent high exposure to glycan-mimicking bacteria. This suggests that individuals who have already been exposed to the glycan mimics in small amounts are less sensitive to autoimmune reactions against these glycans, and this could be a factor in determining susceptibility to GBS.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Síndrome de Guillain-Barré , Niño , Humanos , Preescolar , Síndrome de Guillain-Barré/microbiología , Gangliósidos , Infecciones por Campylobacter/microbiología , Imitación Molecular , Gangliósido G(M1) , Lipopolisacáridos , Macrófagos , Bacterias , Parálisis/complicaciones
18.
PLoS One ; 15(12): e0244031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33378351

RESUMEN

Ecotin, first described in Escherichia coli, is a potent inhibitor of a broad range of serine proteases including those typically released by the innate immune system such as neutrophil elastase (NE). Here we describe the identification of ecotin orthologs in various Campylobacter species, including Campylobacter rectus and Campylobacter showae residing in the oral cavity and implicated in the development and progression of periodontal disease in humans. To investigate the function of these ecotins in vitro, the orthologs from C. rectus and C. showae were recombinantly expressed and purified from E. coli. Using CmeA degradation/protection assays, fluorescence resonance energy transfer and NE activity assays, we found that ecotins from C. rectus and C. showae inhibit NE, factor Xa and trypsin, but not the Campylobacter jejuni serine protease HtrA or its ortholog in E. coli, DegP. To further evaluate ecotin function in vivo, an E. coli ecotin-deficient mutant was complemented with the C. rectus and C. showae homologs. Using a neutrophil killing assay, we demonstrate that the low survival rate of the E. coli ecotin-deficient mutant can be rescued upon expression of ecotins from C. rectus and C. showae. In addition, the C. rectus and C. showae ecotins partially compensate for loss of N-glycosylation and increased protease susceptibility in the related pathogen, Campylobacter jejuni, thus implicating a similar role for these proteins in the native host to cope with the protease-rich environment of the oral cavity.


Asunto(s)
Campylobacter rectus/metabolismo , Campylobacter/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Periplasmáticas/genética , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Tripsina/metabolismo , Animales , Campylobacter/genética , Campylobacter rectus/genética , Células Cultivadas , Pollos , Humanos , Neutrófilos/efectos de los fármacos , Elastasa Pancreática/antagonistas & inhibidores , Homología de Secuencia , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Tripsina/farmacología
19.
Front Microbiol ; 11: 1918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922376

RESUMEN

Antimicrobial resistance is an ancient bacterial defense mechanism that has rapidly spread due to the frequent use of antibiotics for disease treatment and livestock growth promotion. We are becoming increasingly aware that pathogens, such as members of the genus Acinetobacter, are precipitously evolving drug resistances through multiple mechanisms, including the acquisition of antibiotic resistance genes. In this study, we isolated three multidrug resistant Acinetobacter species from birds on a free-range farm. Acinetobacter radioresistens, Acinetobacter lwoffii, and Acinetobacter johnsonii were isolated from hens, turkeys and ducks and were resistant to 14 clinically relevant antibiotics, including several listed by the World Health Organization as essential medicines. Co-culturing any of the three Acinetobacter species with Acinetobacter baumannii resulted in contact-dependent release of intact resistance determinants. We also isolated several lytic bacteriophages and selected two of these phages to be included in this study based on differences in plaquing characteristics, nucleic acid content and viral morphology. Both phages released host DNA, including antibiotic resistance genes during cell lysis and we demonstrated that these resistance determinants were transferable to a naïve strain of Escherichia coli. This study demonstrates that contact-dependent competition between bacterial species can readily contribute to DNA release into the environment, including antibiotic resistance determinants. We also highlight that the constant lysis and turnover of bacterial populations during the natural lifecycle of a lytic bacteriophage is an underappreciated mechanism for the liberation of DNA and subsequent genetic exchange.

20.
Front Microbiol ; 11: 1191, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625174

RESUMEN

Campylobacter fetus is commonly associated with venereal disease and abortions in cattle and sheep, and can also cause intestinal or systemic infections in humans that are immunocompromised, elderly, or exposed to infected livestock. It is also believed that C. fetus infection can result from the consumption or handling of contaminated food products, but C. fetus is rarely detected in food since isolation methods are not suited for its detection and the physiology of the organism makes culturing difficult. In the related species, Campylobacter jejuni, the ability to colonize the host has been linked to N-linked protein glycosylation with quantitative proteomics demonstrating that glycosylation is interconnected with cell physiology. Using label-free quantitative (LFQ) proteomics, we found more than 100 proteins significantly altered in expression in two C. fetus subsp. fetus protein glycosylation (pgl) mutants (pglX and pglJ) compared to the wild-type. Significant increases in the expression of the (NiFe)-hydrogenase HynABC, catalyzing H2-oxidation for energy harvesting, correlated with significantly increased levels of cellular nickel, improved growth in H2 and increased hydrogenase activity, suggesting that N-glycosylation in C. fetus is involved in regulating the HynABC hydrogenase and nickel homeostasis. To further elucidate the function of the C. fetus pgl pathway and its enzymes, heterologous expression in Escherichia coli followed by mutational and functional analyses revealed that PglX and PglY are novel glycosyltransferases involved in extending the C. fetus hexasaccharide beyond the conserved core, while PglJ and PglA have similar activities to their homologs in C. jejuni. In addition, the pgl mutants displayed decreased motility and ethidium bromide efflux and showed an increased sensitivity to antibiotics. This work not only provides insight into the unique protein N-glycosylation pathway of C. fetus, but also expands our knowledge on the influence of protein N-glycosylation on Campylobacter cell physiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA