Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542942

RESUMEN

The aim of the study was to produce new elastomeric materials containing butyl rubber (IIR) filled with silica and phyllosilicates (vermiculite, montmorillonite, perlite or halloysite tubes) with enhanced hydrophobicity and barrier properties and reduced chemical degradation. It was found that the filler type had a significant impact on the degree of cross-linking of butyl rubber and the properties of its vulcanizates. The highest degree of cross-linking and the highest mechanical strength were achieved for IIR composites filled with Arsil with perlite or halloysite tubes. The highest surface hydrophobicity (119°) was confirmed for the IIR vulcanizates with Arsil and montmorillonite. All tested samples showed high barrier properties because both the gas diffusion rate coefficient and the permeability coefficient reached low values. Both unfilled and filled IIR vulcanizates retained chemical resistance in contact with methanol for 480 min. Hour-long contact of a polar solvent (methanol) with each of the vulcanizates did not cause material degradation, while the presence of a non-polar solvent (n-heptane) worsened the mechanical parameters by up to 80%. However, the presence of fillers reduced the chemical degradation of vulcanizates (in the case of cured IIR filled with Arsil and halloysite tubes by 40% compared to the composite without fillers).

2.
RSC Adv ; 13(49): 34681-34692, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38035250

RESUMEN

Cotton textiles modified with copper compounds have a documented mechanism of antimicrobial action against bacteria, fungi, and viruses. During the COVID-19 pandemic, there was pronounced interest in finding new solutions for textile engineering, using modifiers and bioactive methods of functionalization, including introducing copper nanoparticles and complexes into textile products (e.g. masks, special clothing, surface coverings, or tents). However, copper can be toxic, depending on its form and concentration. Functionalized waste may present a risk to the environment if not managed correctly. Here, we present a model for managing copper-modified cotton textile waste. The process includes pressure and temperature-assisted hydrolysis and use of the hydrolysates as a source of sugars for cultivating yeast and lactic acid bacteria biomass as valuable chemical compounds.

3.
Materials (Basel) ; 16(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36770219

RESUMEN

The main goal of this study was to modify the activity of Pd/TiO2/Ti catalyst in the reaction of CO oxidation by the addition of Zn. Plasma electrolytic oxidation (PEO) of Ti wire was conducted to produce a uniform porous layer of TiO2. A mixture of Pd and Zn was then introduced by means of adsorption. After reduction treatment, the activity of the samples was examined by oxidation of 5% CO in a temperature range from 80-350 °C. Model catalysts with sufficient amounts of the metals for physico-chemical investigation were prepared to further investigate the reaction between Pd and Zn during CO oxidation. The structures and compositions of the samples were investigated using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Modification of Pd/TiO2/Ti catalyst by Zn with a Pd:Zn atomic ratio of 2:1 decreased the temperature of complete CO oxidation from 220 °C for Pd/TiO2/Ti to 180 °C for Pd-Zn/TiO2/Ti. The temperature of 50% CO conversion on Pd-Zn(2:1)/TiO2/Ti was around 55 °C lower than in the reaction on monometallic Pd catalyst. The addition of Zn to the Pd catalyst lowered the binding energy of CO on the surface and improved the dissociative adsorption of oxygen, facilitating the oxidation of CO. FTIR showed that the bridging form of adsorbed CO is preferred on bimetallic systems. Analysis of the surface compositions of the samples (SEM-EDS, TOF-SIMS) showed higher amounts of oxygen on the bimetallic systems.

4.
Materials (Basel) ; 15(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35744362

RESUMEN

A porous TiO2 layer was prepared with the plasma electrolytic oxidation (PEO) of Ti. In a further step, Pd was deposited on the TiO2 surface layer using the adsorption method. The activity of the Pd/TiO2/Ti catalyst was investigated during the oxidation of CO to CO2 in a mixture of air with 5% CO. The structure of the catalytic active layer was studied using a scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray diffraction (XRD). The PEO process provided a porous TiO2 layer with a uniform thickness in the range of 5-10 µm, which is desirable for the production of Pd-supported catalysts. A TOF-SIMS analysis showed the formation of Pd nanoparticles after the adsorption treatment. The conversion of CO to CO2 in all samples was achieved at 150-280 °C, depending on the concentration of Pd. The composition of Pd/ TiO2/Ti was determined using ICP-MS. The optimum concentration of Pd on the surface of the catalyst was approximately 0.14% wt. This concentration was obtained when a 0.4% PdCl2 solution was used in the adsorption process. Increasing the concentration of PdCl2 did not lead to a further improvement in the activity of Pd/ TiO2/Ti.

5.
Molecules ; 26(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771160

RESUMEN

Eye shadows, which are products willingly and frequently used by women and even children, have been reported in literature to contain toxic metals. In this work, a total of 94 eye shadows samples available on the Polish market were collected. Eye shadow products have been selected in order to include several parameters important from the point of view of the typical consumer such as: product type (mat/pearl), consumer group (for adults and children), price range (very cheap, medium price, expensive and very expensive), color (twelve different colors were tested), manufacturer (eight brands were investigated) or country of production (four countries were included). The concentration of selected metals (Ag, Ba, Bi, Cd, Pb, Sr, Tl) was determined by ICP-MS technique after the sample extraction with a mixture of nitric acid and hydrogen peroxide in a microwave closed system. For Ag, Cd and Tl, some results were below the established limit of quantification for the employed technique. The presence of strontium, barium, lead and bismuth was confirmed in all studied samples. The obtained results for analyzed elements were, in general, quite comparable with the data reported by other authors. A small number of samples exceeding the permissible values (two samples were beyond the limit value for Cd of 0.5 mg/kg and one exceed the acceptable concentration for Pb of 10 mg/kg) also proves a relatively good condition of the Polish cosmetics market and suggests insubstantial risk for the potential consumers. The results gathered for some of the eye shadows intended for children turned out to be alarmingly high, in particular for elements such as Cd. The highest concentration of Cd reached almost 4 mg/kg, while of Pb amounted to 16 mg/kg. The presence of the statistically significant differences was confirmed for all included parameters with an exception of the color of the eye shadow. Considering the results acquired only for Cd and Pb with respect to the country of origin, the least contaminated cosmetics by metallic impurities seem to be the one produced in Canada, while the ones presenting the highest health risk among all studied eye shadows are make-up cosmetics originating from Poland and Italy. Multivariate analysis of a large data set using CA methods and PCA provided valuable information on dependencies between variables and objects.


Asunto(s)
Cosméticos/química , Metales Pesados/aislamiento & purificación , Humanos , Espectrometría de Masas , Metales Pesados/química
6.
Materials (Basel) ; 14(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34771767

RESUMEN

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was applied to detect traces of amphetamine on fingerprints. In the present study, three different lift tapes and latent powder fingerprints were tested. The obtained results show that it is possible to identify traces of a drug as well as its distribution over the tested fingerprint after its transfer from the primary base onto an adhesive lifter (secondary base). Moreover, images obtained by the TOF-SIMS technique enable the observation of very small areas of the analysed fingerprint as well as the identification of micro-objects (residues of a contaminant) that were left on the fingerprint. The use of the black latent fingerprint powder did not interfere with the TOF-SIMS analysis, which makes it possible to effectively use this technique to study the traces of substances on the revealed fingerprints.

7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445779

RESUMEN

This work interrogates for the first time the catalytic properties of various monometallic Ni catalysts in the oxy-steam reforming of LNG. Various research techniques, including X-ray diffraction (XRD), specific surface area and porosity analysis (BET method), scanning electron microscopy with X-ray microanalysis (SEM-EDS), temperature-programmed desorption of ammonia (TPD-NH3), temperature-programmed reduction (TPR-H2) and the FTIR method, were used to study their physicochemical properties. The mechanism of the oxy-steam reforming of LNG is also discussed in this paper. The high activity of monometallic catalysts supported on 5% La2O3-CeO2 and 5% ZrO2-CeO2 oxides in the studied process have been proven and explained on the basis of their acidity, specific surface area, sorption properties in relation to the reaction products, the crystallite size of the metallic nickel and their phase composition.


Asunto(s)
Cerio/química , Lantano/química , Níquel/química , Óxidos/química , Óxido de Aluminio/química , Amoníaco/química , Catálisis , Hidrógeno/química , Gas Natural , Vapor , Temperatura , Difracción de Rayos X/métodos
8.
Materials (Basel) ; 14(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066469

RESUMEN

This work provides valuable information about unexplored catalytic systems tested in the transesterification reaction of vegetable oil with methanol. It was demonstrated that natural zeolite treatment leads to enhanced catalytic activity and yield of biodiesel production. The activation of the catalytic material in a mixture of 5% H2-95% Ar resulted in an improvement of the values of the TG conversion and fatty acid methyl esters (FAME) yield. In addition, it was proven that the incorporation of CaO, MgO and SrO oxides onto the natural zeolite surface improves the TG conversion and FAME yield values in the transesterification reaction.

9.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920200

RESUMEN

Seventy-three samples of alcoholic beverages and juices that were purchased on the Polish market and home-made were analyzed for their elemental profiles. The levels of 23 metals were determined by ICP-MS (Ag, Ba, Bi, Cd, Co, Cr, Li, Mn, Ni, Pb, Sr and Tl), ICP-OES (Al, B, Ca, Cu, Fe, K, Mg, Na, Ti and Zn) and CVAAS (Hg) techniques in twenty-five samples of ciders widely available on the Polish market; six samples of home-made ciders; two samples of juices used in the production of these ciders; and forty samples of low-percentage, flavored alcoholic beverages based on beer. The gathered analytical data confirmed that the final elemental fingerprint of a product is affected by the elemental fingerprint of the ingredients used (apple variety) as well as the technology and equipment used by the producer, and in the case of commercial ciders, also the impact of type of the packaging used was proven. These factors are specific to each producer and the influence of the mentioned above parameters was revealed as a result of the performed analysis. Additionally, the inclusion of the home-made ciders in the data set helped us to understand the potential origin of some elements, from the raw materials to the final products. The applied statistical tests revealed (Kruskal-Wallis and ANOVA) the existence of statistically significant differences in the concentration of the following metals: Ag, Al, B, Bi, Co, Cr, Cu, Fe, K, Li, Mg, Na, Ni, Ti and Zn in terms of the type of cider origin (commercial and home-made). In turn, for different packaging (can or bottle) within one brand of commercial cider, the existence of statistically significant differences for Cu, Mn and Na was proved. The concentrations of all determined elements in the commercial cider from the Polish market and home-made cider samples can be considered as nontoxic, because the measured levels of elements indicated in the regulations were lower than the allowable limits. Moreover, the obtained results can be treated as preliminary for the potential authentication of products in order to distinguish the home-made (fake) from the authentic products, especially for premium-class alcoholic beverages.


Asunto(s)
Bebidas Alcohólicas/análisis , Malus/química , Metales/aislamiento & purificación , Oligoelementos/aislamiento & purificación , Humanos , Iones/química , Iones/aislamiento & purificación , Espectrometría de Masas , Metales/química , Polonia , Análisis Espectral , Oligoelementos/química
10.
Molecules ; 26(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406611

RESUMEN

Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd-8 samples, Pb-9 samples, Cu-1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia - strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.


Asunto(s)
Metales Pesados/análisis , Oligoelementos/análisis , Vitis/química , Vitis/clasificación , Vino/análisis , Vino/clasificación , Australia , Fermentación , Espectrometría de Masas , Polonia
11.
Materials (Basel) ; 14(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374381

RESUMEN

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.

12.
Materials (Basel) ; 13(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302526

RESUMEN

The production of pure hydrogen is one of the most important problems of the modern chemical industry. While high volume production of hydrogen is well under control, finding a cheap method of hydrogen production for small, mobile, or his receivers, such as fuel cells or hybrid cars, is still a problem. Potentially, a promising method for the generation of hydrogen can be oxy-steam-reforming of methanol process. It is a process that takes place at relatively low temperature and atmospheric pressure, which makes it possible to generate hydrogen directly where it is needed. It is a process that takes place at relatively low temperature and atmospheric pressure, which makes it possible to generate hydrogen directly where it is needed. This paper summarizes the current state of knowledge on the catalysts used for the production of hydrogen in the process of the oxy-steam-reforming of methanol (OSRM). The development of innovative energy generation technologies has intensified research related to the design of new catalysts that can be used in methanol-reforming reactions. This review shows the different pathways of the methanol-reforming reaction. The paper presents a comparison of commonly used copper-based catalysts with other catalytic systems for the production of H2 via OSRM reaction. The surface mechanism of the oxy-steam-reforming of methanol and the kinetic model of the OSRM process are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA