Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biol Futur ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044043

RESUMEN

The primary aim of the present study was to reveal the major differences between benzene-degrading bacterial communities evolve under aerobic versus microaerobic conditions and to reveal the diversity of those bacteria, which can relatively quickly degrade benzene even under microaerobic conditions. For this, parallel aerobic and microaerobic microcosms were set up by using groundwater sediment of a BTEX-contaminated site and 13C labelled benzene. The evolved total bacterial communities were first investigated by 16S rRNA gene Illumina amplicon sequencing, followed by a density gradient fractionation of DNA and a separate investigation of "heavy" and "light" DNA fractions. Results shed light on the fact that the availability of oxygen strongly determined the structure of the degrading bacterial communities. While members of the genus Pseudomonas were overwhelmingly dominant under clear aerobic conditions, they were almost completely replaced by members of genera Malikia and Azovibrio in the microaerobic microcosms. Investigation of the density resolved DNA fractions further confirmed the key role of these two latter genera in the microaerobic degradation of benzene. Moreover, analysis of a previously acquired metagenome-assembled Azovibrio genome suggested that benzene was degraded through the meta-cleavage pathway by this bacterium, with the help of a subfamily I.2.I-type catechol 2,3-dioxygenase. Overall, results of the present study implicate that under limited oxygen availability, some potentially microaerophilic bacteria play crucial role in the aerobic degradation of aromatic hydrocarbons.

2.
Biol Futur ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030426

RESUMEN

Salinization and sodification are serious and worldwide growing threats to healthy soil functions. Although plants developed a plethora of traits to cope with high salinity, soil bacteria are also essential players of the adaptation process. However, there is still lack of knowledge on how other biotic and abiotic factors, such as land use or different soil properties, affect the bacterial community structure of these soils. Therefore, besides soil chemical and physical investigations, bacterial communities of differently managed salt-affected soils were analysed through 16S rRNA gene Illumina amplicon sequencing and compared. Results have shown that land use and soil texture were the main drivers in shaping the bacterial community structure of the Hungarian salt-affected soils. It was observed that at undisturbed pasture and meadow sites, soil texture and the ratio of vegetation cover were the determinative factors shaping the bacterial community structures, mainly at the level of phylum Acidobacteriota. Sandy soil texture promoted the high abundance of members of the class Blastocatellia, while at the slightly disturbed meadow soil showing high clay content was dominated by members of the class Acidobacteriia. The OTUs belonging to the class Ktedonobacteria, which were reported mostly in geothermal sediments, reached a relatively high abundance in the meadow soil.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38180316

RESUMEN

A Gram-stain-negative strain, designated as D2M1T was isolated from xylene-degrading enrichment culture and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene sequence analysis revealed that strain D2M1T belongs to the genus Acidovorax, with the highest 16S rRNA gene similarity to Acidovorax delafieldii DSM 64T (99.93 %), followed by Acidovorax radicis DSM 23535T (98.77 %) and Acidovorax kalamii MTCC 12652T (98.76 %). The draft genome sequence of strain D2M1T is 5.49 Mb long, and the G+C content of the genome is 64.2 mol%. Orthologous average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain D2M1T and its closest relatives were below the threshold values for species demarcation confirming that strain D2M1T is distinctly separated from its closest relatives. The whole genome analysis of the strain revealed a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including an I.2.C-type catechol 2,3-dioxygenase (C23O) gene. The strain was able to degrade benzene and ethylbenzene as sole sources of carbon and energy under aerobic and microaerobic conditions. Cells were facultatively aerobic rods and motile with a single polar flagellum. The predominant fatty acids (>10 % of the total) of strain D2M1T were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major ubiquinone of strain D2M1T was Q8, while the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on polyphasic data, it is concluded that strain D2M1T represents a novel species of the genus Acidovorax, for which the name of Acidovorax benzenivorans sp. nov. is proposed. The type strain of the species is strain D2M1T (=DSM 115238T=NCAIM B.02679T).


Asunto(s)
Hidrocarburos Aromáticos , Xilenos , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
4.
Environ Sci Technol ; 57(7): 2846-2855, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752053

RESUMEN

Among monoaromatic hydrocarbons, xylenes, especially the ortho and para isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus Pseudomonas were the most dominant in both types of enrichments, the Rhodoferax and Azovibrio lineages were only abundant under microaerobic conditions, while Sphingobium entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a Rhodoferax-related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains Sphingobium sp. AS12 and Pseudomonas sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus Sphingobium are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.


Asunto(s)
Dioxigenasas , Hidrocarburos Aromáticos , Xilenos/análisis , Xilenos/metabolismo , Filogenia , Hidrocarburos Aromáticos/metabolismo , Bacterias/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Biodegradación Ambiental
5.
Chemosphere ; 316: 137717, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610512

RESUMEN

The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15-53%; however, in the case of cations (except non-toxic choline), only 13-20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microorganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, obtained results indicate that corresponding ions in HILs might act as separate moieties in the environment.


Asunto(s)
Herbicidas , Líquidos Iónicos , Aniones/química , Cationes/química , Herbicidas/toxicidad , Herbicidas/química , Líquidos Iónicos/toxicidad , Líquidos Iónicos/química , Microbiología del Suelo , Glifosato
6.
Environ Sci Pollut Res Int ; 30(15): 44518-44535, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36690856

RESUMEN

Diclofenac, ibuprofen, and carbamazepine are three of the most widely detected and most concerning pharmaceutical residues in aquatic ecosystems. The aim of this study was to identify bacteria that may be involved in their degradation from a bacterial biofilm. Selective enrichment cultures in mineral salt solution containing pharmaceutical compounds as sole source of carbon and energy were set up, and population dynamics were monitored using shotgun metagenome sequencing. Bacterial genomes were reconstructed using genome-resolved metagenomics. Thirty bacterial isolates were obtained, identified at species level, and tested regarding pharmaceutical biodegradation at an initial concentration of 1.5 mg l-1. The results indicated that most probably diclofenac biodegrading cultures consisted of members of genera Ferrovibrio, Hydrocarboniphaga, Zavarzinia, and Sphingopyxis, while in ibuprofen biodegradation Nocardioides and Starkeya, and in carbamazepine biodegradation Nocardioides, Pseudonocardia, and Sphingopyxis might be involved. During the enrichments, compared to the initial state the percentage relative abundance of these genera increased up to three orders of magnitude. Except Starkeya, the genomes of these bacteria were reconstructed and annotated. Metabolic analyses of the annotated genomes indicated that these bacteria harbored genes associated with pharmaceutical biodegradation. Stenotrophomonas humi DIC_5 and Rhizobium daejeonense IBU_18 isolates eliminated diclofenac and ibuprofen during the tests in the presence of either glucose (3 g l-1) or in R2A broth. Higher than 90% concentration reduction was observed in the case of both compounds.


Asunto(s)
Agua Subterránea , Ibuprofeno , Ibuprofeno/análisis , Diclofenaco/química , Ecosistema , Carbamazepina/análisis , Bacterias/metabolismo , Biodegradación Ambiental , Biopelículas , Preparaciones Farmacéuticas
7.
Front Microbiol ; 13: 929128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204622

RESUMEN

Members of the genus Pseudomonas are known to be widespread in hydrocarbon contaminated environments because of their remarkable ability to degrade a variety of petroleum hydrocarbons, including BTEX (benzene, toluene, ethylbenzene and xylene) compounds. During an enrichment investigation which aimed to study microaerobic xylene degradation in a legacy petroleum hydrocarbon-contaminated groundwater, a novel Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated as MAP12T was isolated. It was capable of degrading benzene, toluene, meta- and para- xylene effectively under both aerobic and microaerobic conditions. The 16S rRNA gene sequence analysis revealed that strain MAP12T belongs to the genus Pseudomonas, with the highest 16S rRNA gene similarity to Pseudomonas linyingensis LYBRD3-7 T (98.42%), followed by Pseudomonas sagittaria JCM 18195 T (98.29%) and Pseudomonas alcaliphila JCM 10630 T (98.08%). Phylogenomic tree constructed using a concatenated alignment of 92 core genes indicated that strain MAP12T is distinct from any known Pseudomonas species. The draft genome sequence of strain MAP12T is 4.36 Mb long, and the G+C content of MAP12T genome is 65.8%. Orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) analyses confirmed that strain MAP12T is distinctly separated from its closest neighbors (OrthoANI < 89 %; dDDH < 36%). Though several members of the genus Pseudomonas are well known for their aerobic BTEX degradation capability, this is the first report of a novel Pseudomonas species capable of degrading xylene under microaerobic conditions. By applying genome-resolved metagenomics, we were able to partially reconstruct the genome of strain MAP12 T from metagenomics sequence data and showed that strain MAP12 T was an abundant member of the xylene-degrading bacterial community under microaerobic conditions. Strain MAP12T contains ubiquinone 9 (Q9) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine as major polar lipids. The major cellular fatty acids of strain MAP12T are summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0 and summed feature 8 (C18:1ω6c and/or C18:1ω7c). The results of this polyphasic study support that strain MAP12T represents a novel species of the genus Pseudomonas, hence the name of Pseudomonas aromaticivorans sp. nov. is proposed for this strain considering its aromatic hydrocarbon degradation capability. The type strain is MAP12T (=LMG 32466, =NCAIM B.02668).

8.
Antonie Van Leeuwenhoek ; 115(9): 1113-1128, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35841500

RESUMEN

In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).


Asunto(s)
Benceno , Comamonadaceae , Técnicas de Tipificación Bacteriana , Derivados del Benceno , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tolueno
9.
Syst Appl Microbiol ; 45(4): 126339, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35714383

RESUMEN

From the metagenome of a carbamazepine amended selective enrichment culture the genome of a new to science bacterial species affiliating with the genus Nocardioides was reconstructed. From the same enrichment an aerobic actinobacterium, strain CBZ_1T, sharing 99.4% whole-genome sequence similarity with the reconstructed Nocardioides sp. bin genome was isolated. On the basis of 16S rRNA gene sequence similarity the novel isolate affiliated to the genus Nocardioides, with the closest relatives Nocardioides kongjuensis DSM19082T (98.4%), Nocardioides daeguensis JCM17460T (98.4%) and Nocardioides nitrophenolicus DSM15529T (98.2%). Using a polyphasic approach it was confirmed that the isolate CBZ_1T represents a new phyletic lineage within the genus Nocardioides. According to metagenomic, metatranscriptomic studies and metabolic analyses strain CZB_1T was abundant in both carbamazepine and ibuprofen enrichments, and harbors biodegradative genes involved in the biodegradation of pharmaceutical compounds. Biodegradation studies supported that the new species was capable of ibuprofen biodegradation. After 7 weeks of incubation, in mineral salts solution supplemented with glucose (3 g l-1) as co-substrate, 70% of ibuprofen was eliminated by strain CBZ_1T at an initial conc. of 1.5 mg l-1. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain CBZ_1T to the genus Nocardioides, for which the name Nocardioides carbamazepini sp. nov. (CBZ_1T = NCAIM B.0.2663 = LMG 32395) is proposed. To the best of our knowledge, this is the first study that reports simultaneous genome reconstruction of a new to science bacterial species using metagenome binning and at the same time the isolation of the same novel bacterial species.


Asunto(s)
Actinomycetales , Nocardioides , Técnicas de Tipificación Bacteriana , Composición de Base , Biopelículas , Carbamazepina , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ibuprofeno , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2/química
10.
Arch Microbiol ; 204(6): 301, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524012

RESUMEN

A Gram-negative bacterial strain, named Kb82, was isolated from agricultural soil and a polyphasic approach was used for characterisation and to determine its taxonomic position. Based on 16S rRNA gene sequence analysis, the highest similarity was found with Flavobacterium artemisiae SYP-B1015 (98.2%). The highest ANI (83.3%) and dDDH (26.5%) values were found with Flavobacterium ginsenosidimutans THG 01 and Flavobacterium fluviale HYN0086T, respectively. The isolate is aerobic with rod-shaped cells, positive for catalase and negative for oxidase tests. The DNA G+C content is 34.7 mol%. The only isoprenoid quinone is menaquinone 6 (MK-6). The major fatty acids are iso-C15:0, summed feature 3 (C16:1 ω7c/C16:1 ω6c) and iso-C17:0 3OH. The major polar lipid is phosphatidylethanolamine. On the bases of phenotypic characteristics and analysis of 16S rRNA gene sequences, it is concluded that strain Kb82T represents a novel species in the Flavobacterium genus, for which the name Flavobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb82T (= LMG 31576T = NCAIM B.02635T).


Asunto(s)
Flavobacterium , Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-35138241

RESUMEN

Two Gram-reaction-negative strains, designated as B13T and MA2-2, were isolated from two different aromatic hydrocarbon-degrading enrichment cultures and characterized using a polyphasic approach to determine their taxonomic position. The two strains had identical 16S rRNA gene sequences and were most closely related to Pinisolibacter ravus E9T (97.36 %) and Siculibacillus lacustris SA-279T (96.33 %). Cells were facultatively aerobic rods and motile with a single polar flagellum. The strains were able to degrade ethylbenzene as sole source of carbon and energy. The assembled genome of strain B13T had a total length of 4.91 Mb and the DNA G+C content was 68.8 mol%. The predominant fatty acids (>5 % of the total) of strains B13T and MA2-2 were C18 : 1 ω7c/C18 : 1 ω6c, C16 : 1 ω7c/C16 : 1 ω6c and C16 : 0. The major ubiquinone of strain B13T was Q10, while the major polar lipids were phosphatidyl-N-methylethanolamine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and a phospholipid. Based on phenotypic characteristics and phylogenetic data, it is concluded that strains B13T and MA2-2 are members of the genus Pinisolibacter and represent a novel species for which the name Pinisolibacter aquiterrae sp. nov. is proposed. The type strain of the species is strain B13T (=LMG 32346T=NCAIM B.02665T).


Asunto(s)
Alphaproteobacteria/clasificación , Benceno , Filogenia , Xilenos , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Benceno/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/química , Hidrocarburos Aromáticos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Xilenos/metabolismo
12.
Environ Sci Pollut Res Int ; 29(19): 28431-28445, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34989990

RESUMEN

To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.


Asunto(s)
Comamonadaceae , Agua Subterránea , Microbiota , Bacterias Aerobias/metabolismo , Benceno/metabolismo , Biodegradación Ambiental , Comamonadaceae/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo
13.
AMB Express ; 12(1): 4, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35075552

RESUMEN

In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.

14.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34779758

RESUMEN

A Gram-reaction-negative bacterial strain, designated Kb22T, was isolated from agricultural soil and characterized using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (94.39 %) to Sphingobacterium nematocida M-SX103T. The highest average nucleotide identity value (71.83 %) was found with Sphingobacterium composti T5-12T, and the highest amino acid identity value (66.65 %) was found with Sphingobacterium olei HAL-9T. Cells are aerobic, non-motile rods. The isolate was found to be positive for catalase and oxidase tests. The assembled genome of strain Kb22T has a total length of 4,06 Mb, the DNA G+C content is 38.1 mol%. The only isoprenoid quinone is menaquinone 7 (MK-7). The major fatty acids are iso-C15:0 (28.4%), summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) (25.7 %) and iso-C17:0 3-OH (19.7 %). Based on phenotypic characteristics and phylogenetic results, it is concluded that strain Kb22T is a member of the genus Sphingobacterium and represents a novel species for which the name Sphingobacterium hungaricum sp. nov. is proposed. The type strain of the species is strain Kb22T (=LMG 31574T=NCAIM B.02638T).


Asunto(s)
Filogenia , Microbiología del Suelo , Sphingobacterium , Agricultura , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingobacterium/clasificación , Sphingobacterium/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
AMB Express ; 11(1): 126, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34487274

RESUMEN

Here, we report and discuss the applicability of Variovorax paradoxus strain BFB1_13 in the bioremediation of BTEX contaminated sites. Strain BFB1_13 was capable of degrading all the six BTEX-compounds under both aerobic (O2 conc. 8 mg l-1) and micro-aerobic/oxygen-limited (O2 conc. 0.5 mg l-1) conditions using either individual (8 mg‧l-1) or a mixture of compounds (~ 1.3 mg‧l-1 of each BTEX compound). The BTEX biodegradation capability of SBP-encapsulated cultures (SBP-Small Bioreactor Platform) was also assessed. The fastest degradation rate was observed in the case of aerobic benzene biodegradation (8 mg l-1 per 90 h). Complete biodegradation of other BTEX occurred after at least 168 h of incubation, irrespective of the oxygenation and encapsulation. No statistically significant difference was observed between aerobic and microaerobic BTEX biodegradation. Genes involved in BTEX biodegradation were annotated and degradation pathways were predicted based on whole-genome shotgun sequencing and metabolic analysis. We conclude that V. paradoxus strain BFB1_13 could be used for the development of reactive biobarriers for the containment and in situ decontamination of BTEX contaminated groundwater plumes. Our results suggest that V. paradoxus strain BFB1_13-alone or in co-culture with other BTEX degrading bacterial isolates-can be a new and efficient commercial bioremediation agent for BTEX contaminated sites.

16.
Antonie Van Leeuwenhoek ; 114(10): 1575-1584, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34363180

RESUMEN

A Gram-reaction-negative halotolerant bacterial strain, designated Ka21T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, highest similarity was found with Sphingobacterium alkalisoli Y3L14T (96.72%). Cells were observed to be aerobic, non-motile rods. The isolate was found to be able to grow between 0 and 10% of NaCl concentration. The assembled genome of strain Ka21T has a total length of 5.2 Mb with a G + C content of 41.0 mol%. According to the genome analysis, Ka21T encodes several glycoside hydrolases that may play a role in the degradation of accumulated plant biomass in the soil. Based on phenotypic characteristics and phylogenetic analysis, it is concluded that strain Ka21T represents a novel species in the Sphingobacterium genus for which the name Sphingobacterium pedocola sp. nov. is proposed. The type strain of the species is strain Ka21T (= LMG 31575T = NCAIM B.02636T).


Asunto(s)
Sphingobacterium , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo , Sphingobacterium/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-34309507

RESUMEN

A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterial strain (UP-52T) was isolated from hydrocarbon-polluted groundwater located near an oil refinery in Tiszaujvaros, Hungary. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Dyadobacter in the family Cytophagaceae. Its closely related species are Dyadobacter frigoris (98.00 %), Dyadobacter koreensis (97.64 %), Dyadobacter psychrophilus (97.57 %), Dyadobacter ginsengisoli (97.56 %) and Dyadobacter psychrotolerans (97.20 %). The predominant fatty acids are summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω7c/C16 : 1 ω6c), C15 : 0 iso, C16 : 1 ω5c and C17 : 0 iso 3OH. The predominant respiratory quinone detected in strain UP-52T is quinone MK-7. The dominant polar lipids are glycolipid, phosphoaminolipid, phospholipid and aminolipid. The DNA G+C content is 40.0 mol%. Flexirubin-type pigment was present. Based on these phenotypic, chemotaxonomic and phylogenetic results, UP-52T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter subterraneus sp. nov. is proposed. The type strain is UP-52T (=NCAIM B.02653T=CCM 9030T).


Asunto(s)
Cytophagaceae/clasificación , Agua Subterránea/microbiología , Industria del Petróleo y Gas , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Cytophagaceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hungría , Hidrocarburos , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes Químicos del Agua
19.
Artículo en Inglés | MEDLINE | ID: mdl-33999790

RESUMEN

A novel Gram-reaction-negative bacterial strain, designated Ka43T, was isolated from agricultural soil and characterised using a polyphasic approach to determine its taxonomic position. On the basis of 16S rRNA gene sequence analysis, the strain shows highest similarity (97.1 %) to Cellvibrio diazotrophicus E50T. Cells of strain Ka43T are aerobic, motile, short rods. The major fatty acids are summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), C18 : 1 ω7c and C16 : 0. The only isoprenoid quinone is Q-8. The polar lipid profile includes phosphatidylethanolamine, phosphatidylglycerol, four phospholipids, two lipids and an aminolipid. The assembled genome of strain Ka43T has a total length of 4.2 Mb and the DNA G+C content is 51.6 mol%. Based on phenotypic data, including chemotaxonomic characteristics and analysis of the 16S rRNA gene sequences, it was concluded that strain Ka43T represents a novel species in the genus Cellvibrio, for which the name Cellvibrio polysaccharolyticus sp. nov. is proposed. The type strain of the species is strain Ka43T (=LMG 31577T=NCAIM B.02637T).


Asunto(s)
Agricultura , Cellvibrio/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Cellvibrio/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hungría , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
20.
Artículo en Inglés | MEDLINE | ID: mdl-33295857

RESUMEN

A Gram-negative, dark orange-pigmented, aerobic, non-spore-forming, coccoid-shaped bacterium designated as ZS-1/3T was isolated from a floating plastic litter (polypropylene straw) sample, collected from shallow seawater near the public beach of Laganas on Zakynthos island, Greece. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate is affiliated with the genus Parvularcula in the family Parvularculaceae. Its closest relatives are Parvularcula lutaonensis (98.09  %) and Parvularcula oceanus (95.89  %). The pH and temperature ranges for growth are pH 5-10 and 20-38 °C (optima, pH 7.0 and 28 °C). The predominant fatty acids are C18 : 1 ω7c (56.84  %), C16 : 0 (27.51  %), C18 : 0 (2.25  %) and C12 : 0 (1.42  %). The predominant respiratory quinone detected in strain ZS-1/3T is quinone-10 (Q10); the majority of detected polar lipids are glycolipid. The DNA G+C content is 62.5  mol%. Physiological and chemotaxonomic data further confirmed the distinctiveness of strain ZS-1/3T from other members of the genus Parvularcula. Thus, strain ZS-1/3T is considered to represent a novel species of the genus, for which the name Parvularcula mediterranea. sp. nov. is proposed. The type strain is ZS-1/3T (=NCAIM B 02654T=CCM 9032T).


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Plásticos , Agua de Mar/microbiología , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Residuos de Alimentos , Grecia , Islas , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química , Contaminantes del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA