Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neuromodulation ; 26(8): 1592-1601, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35981956

RESUMEN

BACKGROUND: Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species. In this study, we aimed to determine how precisely the frequency of stimulation must match the naturally occurring SO frequency in individuals to best improve SO-spindle coupling. Moreover, we systematically tested stimulation durations necessary to induce changes. MATERIALS AND METHODS: We addressed these questions by comparing so-tDCS with individualized frequency to standardized frequency of 0.75 Hz in a within-subject design with 28 older participants during napping while stimulation train durations were systematically varied between 30 seconds, 2 minutes, and 5 minutes. RESULTS: Stimulation trains as short as 30 seconds were sufficient to modulate the coupling between SOs and spindle activity. Contrary to our expectations, so-tDCS with standardized frequency indicated stronger aftereffects regarding SO-spindle coupling than individualized frequency. Angle and variance of spindle maxima occurrence during the SO cycle were similarly modulated. CONCLUSIONS: In sum, short stimulation trains were sufficient to induce significant changes in sleep physiology, allowing for more trains of stimulation, which provides methodological advantages and possibly even larger behavioral effects in future studies. Regarding individualized stimulation frequency, further options of optimization need to be investigated, such as closed-loop stimulation, to calibrate stimulation frequency to the SO frequency at the time of stimulation onset. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04714879.


Asunto(s)
Consolidación de la Memoria , Estimulación Transcraneal de Corriente Directa , Humanos , Sueño/fisiología , Consolidación de la Memoria/fisiología , Electroencefalografía
2.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599915

RESUMEN

Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lisofosfolípidos/metabolismo , Mutación , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Esfingosina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Esfingosina/metabolismo , Adulto Joven
3.
J Alzheimers Dis ; 57(4): 1105-1121, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28059794

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-ß (Aß) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Estrés Oxidativo/fisiología , Sinapsis/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA