RESUMEN
BACKGROUND: 4-[18F]fluorobenzyl-triphenylphosphonium ([18F]FBnTP) is a lipophilic cation PET tracer. The cellular uptake of [18F]FBnTP is correlated with oxidative phosphorylation by mitochondria, which has been associated with multiple critical diseases. To date, [18F]FBnTP has been successfully applied for imaging myocardial perfusion, assessment of severity of coronary artery stenosis, delineation of the ischemic area after transient coronary occlusion, and detection/quantification of apoptosis in various animal models. Recent preclinical and clinical studies have also expanded the possibilities of using [18F]FBnTP in oncological diagnosis and therapeutic monitoring. However, [18F]FBnTP is typically prepared through a tediously lengthy four-step, three-pot reaction and required multiple synthesizer modules; Thus, such an approach remains a challenge for this promising radiopharmaceutical to be implemented for routine clinical studies. Herein, we report an optimized one-step, one-pot automated approach to produce [18F]FBnTP through a single standard commercially-available radiosynthesizer that enables centralized production for clinical use. RESULTS: The fully automated production of [18F]FBnTP took less than 55 min with radiochemical yields ranging from 28.33 ± 13.92% (non-decay corrected), apparent molar activity of 69.23 ± 45.62 GBq/µmol, and radiochemical purities of 99.79 ± 0.41%. The formulated [18F]FBnTP solution was determined to be sterile and colorless with a pH of 4.0-6.0. Our data has indicated no observable radiolysis after 8 h from the time of final product formulation and maximum assay of 7.88 GBq. CONCLUSIONS: A simplified and cGMP-compliant radiosynthesis of [18F]FBnTP has been established on the commercially available synthesizer in high activity concentration and radiochemical purity. While the preclinical and clinical studies using [18F]FBnTP PET are currently underway, the automated approaches reported herein facilitate clinical adoption of this radiotracer and warrant centralized production of [18F]FBnTP for imaging multiple patients.
RESUMEN
Background (S)-4-(3- 18 F-Fluoropropyl)-L-Glutamic Acid ([ 18 F]FSPG) is a positron emission tomography (PET) tracer that specifically targets the cystine/glutamate antiporter (xc-), which is frequently overexpressed in cancer and several neurological disorders. Pilot studies examining the dosimetry and biodistribution of ([ 18 F]FSPG in healthy volunteers and tumor detection in patients with non-small cell lung cancer, hepatocellular carcinoma, and brain tumors showed promising results. In particular, low background uptake in the brain, lung, liver, and bowel was observed that further leads to excellent imaging contrasts of [ 18 F]FSPG PET. However, reliable production-scale cGMP-compliant automated procedures for [ 18 F]FSPG production are still lacking to further increase the utility and clinical adoption of this radiotracer. Herein, we report the optimized automated approaches to produce [ 18 F]FSPG through two commercially available radiosynthesizers capable of supporting centralized and large-scale production for clinical use. Results Starting with activity levels of 60-85 GBq, the fully-automated process to produce [ 18 F]FSPG took less than 45 minutes with average radiochemical yields of 22.56 ± 0.97% and 30.82 ± 1.60% (non-decay corrected) using TRACERlab™ FXFN and FASTlab™, respectively. The radiochemical purities were > 95% and the formulated [ 18 F]FSPG solution was determined to be sterile and colorless with the pH of 6.5-7.5. No radiolysis of the product was observed up to 8 hours after final batch formulation. Conclusions In summary, cGMP-compliant radiosyntheses and quality control of [ 18 F]FSPG have been established on two commercially available synthesizers leveraging high activity concentration and radiochemical purity. While the clinical trials using [ 18 F]FSPG PET are currently underway, the automated approaches reported herein will accelerate the clinical adoption of this radiotracer and warrant centralized and large-scale production of [ 18 F]FSPG.
RESUMEN
BACKGROUND: (S)-4-(3-18F-Fluoropropyl)-L-Glutamic Acid ([18F]FSPG) is a positron emission tomography (PET) tracer that specifically targets the cystine/glutamate antiporter (xc-), which is frequently overexpressed in cancer and several neurological disorders. Pilot studies examining the dosimetry and biodistribution of [18F]FSPG in healthy volunteers and tumor detection in patients with non-small cell lung cancer, hepatocellular carcinoma, and brain tumors showed promising results. In particular, low background uptake in the brain, lung, liver, and bowel was observed that further leads to excellent imaging contrasts of [18F]FSPG PET. However, reliable production-scale cGMP-compliant automated procedures for [18F]FSPG production are still lacking to further increase the utility and clinical adoption of this radiotracer. Herein, we report the optimized automated approaches to produce [18F]FSPG through two commercially available radiosynthesizers capable of supporting centralized and large-scale production for clinical use. RESULTS: Starting with activity levels of 60-85 GBq, the fully-automated process to produce [18F]FSPG took less than 45 min with average radiochemical yields of 22.56 ± 0.97% and 30.82 ± 1.60% (non-decay corrected) using TRACERlab™ FXFN and FASTlab™, respectively. The radiochemical purities were > 95% and the formulated [18F]FSPG solution was determined to be sterile and colorless with the pH of 6.5-7.5. No radiolysis of the product was observed up to 8 h after final batch formulation. CONCLUSIONS: In summary, cGMP-compliant radiosyntheses and quality control of [18F]FSPG have been established on two commercially available synthesizers leveraging high activity concentration and radiochemical purity. While the clinical trials using [18F]FSPG PET are currently underway, the automated approaches reported herein will accelerate the clinical adoption of this radiotracer and warrant centralized and large-scale production of [18F]FSPG.
RESUMEN
Prostate cancer is the most common cancer to affect men in the United States and the second most common cancer in men worldwide. Prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET) imaging has become increasingly popular as a novel molecular imaging technique capable of improving the clinical management of patients with prostate cancer. To date, several 68Ga and 18F-labeled PSMA-targeted molecules have shown promising results in imaging patients with recurrent prostate cancer using PET/computed tomography (PET/CT). Studies of involving PSMA-targeted radiopharmaceuticals also suggest a higher sensitivity and specificity, along with an improved detection rate over conventional imaging (CT scan and methylene diphosphonate bone scintigraphy) and 11C/18F-choline PET/CT. In addition, PSMA-617 and PSMA I&T ligands can be labeled with α- and ß-emitters (e.g., 225Ac, 90Y, and 177Lu) and serve as a theranostic tool for patients with metastatic prostate cancer. While the clinical impact of such concept remains to be verified, the preliminary results of PSMA molecular radiotherapy are very encouraging. Herein, we highlighted the current status of development and future perspectives of PSMA-targeted radiopharmaceuticals and their clinical applications.
Asunto(s)
Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Oncología por Radiación/tendencias , Radiofármacos/administración & dosificación , Antígenos de Superficie , Humanos , Masculino , Imagen Molecular/métodos , Imagen Molecular/tendencias , Terapia Molecular Dirigida/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/tendencias , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Oncología por Radiación/métodos , Sensibilidad y EspecificidadRESUMEN
68Ga-PSMA-11 is currently one of the most investigated PET agents for imaging both recurrent prostate cancer and relevant metastases; however, the production and distribution of 68Ga-PSMA-11 is limited to a supply of only a few daily doses when using a commercially available 68Ge/68Ga generator. 68Ge/68Ga generators deliver only a modest amount of activity, up to 1850â¯MBq (50â¯mCi), when new, but it decreases with time. Additionally, the production of 68Ga/68Ge generators has not been able to meet the increasing demand of 68Ga radiotracers. In response to the need for a more economically viable alternative, the focus of this study was to provide a simple and efficient method for producing 68Ga-PSMA-11, using cyclotron-produced 68Ga that is ready for routine clinical practice.