Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686943

RESUMEN

Three-layer structures based on various multi-component films of III-V semiconductors heavily doped with Fe were grown using the pulsed laser sputtering of InSb, GaSb, InAs, GaAs and Fe solid targets. The structures comprising these InAsSb:Fe, InGaSb:Fe and InSb:Fe layers with Fe concentrations up to 24 at. % and separated by GaAs spacers were deposited on (001) i-GaAs substrates at 200 °C. Transmission electron microscopy showed that the structures have a rather high crystalline quality and do not contain secondary-phase inclusions. X-ray photoelectron spectroscopy investigations revealed a significant diffusion of Ga atoms from the GaAs regions into the InAsSb:Fe layers, which has led to the formation of an InGaAsSb:Fe compound with a Ga content up to 20 at. %. It has been found that the ferromagnetic properties of the InAsSb:Fe magnetic semiconductor improve with an increasing Sb:As ratio. It has been concluded that the indirect ferromagnetic exchange interaction between Fe atoms occurs predominantly via Sb atoms.

2.
Materials (Basel) ; 16(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903229

RESUMEN

The conductor aluminum alloys of Al-0.25wt.%Zr alloyed additionally with X = Er, Si, Hf and Nb were the objects of our investigations. The fine-grained microstructure in the alloys was formed via equal channel angular pressing and rotary swaging. The thermal stability of the microstructure, specific electrical resistivity and microhardness of the novel conductor aluminum alloys were investigated. The mechanisms of nucleation of the Al3(Zr, X) secondary particles during annealing the fine-grained aluminum alloys were determined using the Jones-Mehl-Avrami-Kolmogorov equation. Using the Zener equation, the dependencies of the average secondary particle sizes on the annealing time were obtained on the base of the analysis of the data on the grain growth in the aluminum alloys. The secondary particle nucleation during long-time low-temperature annealing (300 °C, 1000 h) was shown to go preferentially at the cores of the lattice dislocations. The Al-0.25%Zr-0.25%Er-0.20%Hf-0.15%Si alloy subjected to long-time annealing at 300 °C has the optimal combination of microhardness and electrical conductivity (59.8%IACS, Hv = 480 ± 15 MPa).

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903693

RESUMEN

Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 µg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.

4.
Materials (Basel) ; 14(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34832459

RESUMEN

In this study, Ingots of (Bi, Sb)2Te3 thermoelectric material with p-type conductivity have been obtained by hot extrusion. The main regularities of hot extrusion of 30 mm rods have been analyzed with the aid of a mathematical simulation on the basis of the joint use of elastic-plastic body approximations. The phase composition, texture and microstructure of the (Bi, Sb)2Te3 solid solutions have been studied using X-ray diffraction and scanning electron microscopy. The thermoelectric properties have been studied using the Harman method. We show that extrusion through a 30 mm diameter die produces a homogeneous strain. The extruded specimens exhibit a fine-grained structure and a clear axial texture in which the cleavage planes are parallel to the extrusion axis. The quantity of defects in the grains of the (Bi, Sb)2Te3 thermoelectric material decreases with an increase in the extrusion rate. An increase in the extrusion temperature leads to a decrease in the Seebeck coefficient and an increase in the electrical conductivity. The specimens extruded at 450 °C and a 0.5 mm/min extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10-3 K-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA