Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biosci Biotechnol Biochem ; 88(1): 63-69, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37791963

RESUMEN

MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Giberelinas/metabolismo , Oxigenasas de Función Mixta/metabolismo
2.
Biomolecules ; 13(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37627271

RESUMEN

The apocarotenoid zaxinone is a recently discovered regulatory metabolite required for proper rice growth and development. In addition, zaxinone and its two mimics (MiZax3 and MiZax5) were shown to have a remarkable growth-promoting activity on crops and a capability to reduce infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production, suggesting their potential for application in agriculture and horticulture. In the present study, we developed a new series of MiZax via structural modification of the two potent zaxinone mimics (MiZax3 and MiZax5) and evaluated their effect on plant growth and Striga infestation. In general, the structural modifications to MiZax3 and MiZax5 did not additionally improve their overall performance but caused an increase in certain activities. In conclusion, MiZax5 and especially MiZax3 remain the likely most efficient zaxinone mimics for controlling Striga infestation.


Asunto(s)
Oryza , Investigación , Agricultura , Productos Agrícolas , Horticultura
3.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569795

RESUMEN

Ethylene is the only gaseous plant hormone that regulates several aspects of plant growth, from seedling morphogenesis to fruit ripening and organ senescence. Ethylene also stimulates the germination of Striga hermonthica, a root parasitic weed that severely damages crops in sub-Saharan Africa. Thus, ethylene response stimulants can be used as weed and crop control agents. Ethylene and ethephon, an ethylene-releasing compound, are currently used as ethylene response inducers. However, since ethylene is a gas, which limits its practical application, we targeted the development of a solid ethylene response inducer that could overcome this disadvantage. We performed chemical screening using Arabidopsis thaliana "triple response" as an indicator of ethylene response. After screening, we selected a compound with a thiourea skeleton and named it ZKT1. We then synthesized various derivatives of ZKT1 and evaluated their ethylene-like activities in Arabidopsis. Some derivatives showed considerably higher activity than ZKT1, and their activity was comparable to that of 1-aminocyclopropane-1-carboxylate. Mode of action analysis using chemical inhibitors and ethylene signaling mutants revealed that ZKT1 derivatives activate the ethylene signaling pathway through interactions with its upstream components. These thiourea derivatives can potentially be potent crop-controlling chemicals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Etilenos/farmacología , Etilenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esqueleto/metabolismo
4.
J Pestic Sci ; 48(2): 61-64, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37361485

RESUMEN

Cyclopropene derivatives have been used as extremely reactive units in organic chemistry owing to their high ring-strain energy. They have become popular reagents both for bioorthogonal chemistry and for chemical biology because of their small size and ability to be genetically encoded. In this context, we conducted an exploratory study to identify the biologically active cyclopropenes that affect normal plant growth. We synthesized several cycloprop-2-ene-1-carboxylic acid derivatives and evaluated their effects on the early growth stage of Arabidopsis thaliana. Eventually, we identified the chemicals that affect apical hook development in Arabidopsis thaliana. Their mode of action is different from those of ethylene receptor inhibition and gibberellin biosynthesis inhibition. We expect that some of the chemicals reported here can be new tools in chemical biology to determine useful molecular targets for herbicides or plant growth regulators.

5.
ACS Omega ; 8(15): 13855-13862, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37091382

RESUMEN

Strigolactones (SLs), phytohormones that inhibit shoot branching in plants, promote the germination of root-parasitic plants, such as Striga spp. and Orobanche spp., which drastically reduces the crop yield. Therefore, reducing SL production via chemical treatment may increase the crop yield. To design specific inhibitors, it is valid to utilize the substrate structure of the target proteins as lead compounds. In this study, we focused on Os900, a rice enzyme that oxidizes the SL precursor carlactone (CL) to 4-deoxyorobanchol (4DO), and synthesized 10 CL derivatives. The effects of the synthesized CL derivatives on SL biosynthesis were evaluated by the Os900 enzyme assay in vitro and by measuring 4DO levels in rice root exudates. We identified some CL derivatives that inhibited SL biosynthesis in vitro and in vivo.

6.
J Pestic Sci ; 47(3): 101-110, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36479457

RESUMEN

Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which parasitize major crops, drastically reduces crop yields and cause economic losses of over a billion US dollars worldwide. Advances in basic research on molecular and cellular processes responsible for parasitic relationships has now achieved steady progress through advances in genome analysis, biochemical analysis and structural biology. On the basis of these advances it is now possible to develop chemicals that control parasitism and reduce agricultural damage. In this review we summarized the recent development of chemicals that can control each step of parasitism from strigolactone biosynthesis in host plants to haustorium formation.

7.
Proc Natl Acad Sci U S A ; 119(49): e2209256119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454752

RESUMEN

Auxin inactivation is critical for plant growth and development. To develop plant growth regulators functioning in auxin inactivation pathway, we performed a phenotype-based chemical screen in Arabidopsis and identified a chemical, nalacin, that partially mimicked the effects of auxin. Genetic, pharmacological, and biochemical approaches demonstrated that nalacin exerts its auxin-like activities by inhibiting indole-3-acetic acid (IAA) conjugation that is mediated by Gretchen Hagen 3 (GH3) acyl acid amido synthetases. The crystal structure of Arabidopsis GH3.6 in complex with D4 (a derivative of nalacin) together with docking simulation analysis revealed the molecular basis of the inhibition of group II GH3 by nalacin. Sequence alignment analysis indicated broad bioactivities of nalacin and D4 as inhibitors of GH3s in vascular plants, which were confirmed, at least, in tomato and rice. In summary, our work identifies nalacin as a potent inhibitor of IAA conjugation mediated by group II GH3 that plays versatile roles in hormone-regulated plant development and has potential applications in both basic research and agriculture.


Asunto(s)
Arabidopsis , Ligasas , Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Fenómenos Químicos , Reguladores del Crecimiento de las Plantas/farmacología , Pruebas Genéticas
8.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322663

RESUMEN

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

9.
Biosci Biotechnol Biochem ; 86(3): 294-299, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34958361

RESUMEN

Hydroxycinnamic acid amides are involved in various developmental processes as well as in biotic and abiotic stress responses. Among them, the presence of spermidine derivatives, such as N1,N8-di(coumaroyl)-spermidine and N1,N8-di(sinapoyl)-spermidine, and their biosynthetic genes have been reported in Arabidopsis, but their functions in plants are still unknown. We chemically synthesized the above-mentioned spermidine derivatives to assess their physiological functions in Arabidopsis. We evaluated the growth and development of chemically treated Arabidopsis and demonstrated that these compounds inhibited seed germination, hypocotyl elongation, and primary root growth, which could be due to modulation of plant hormone homeostasis and signaling. The results suggest that these compounds are regulatory metabolites that modulate plant growth and development.


Asunto(s)
Arabidopsis
10.
aBIOTECH ; 2(1): 1-13, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36304477

RESUMEN

Strigolactones (SLs) are plant hormones that regulate the branching of plants and seed germination stimulants of root parasitic plants. As root parasites are a great threat to agricultural production, the use of SL agonists could be anticipated to provide an efficient method for regulating root parasites as suicidal germination inducers. A series of phenoxyfuranone-type SL mimics, termed debranones, has been reported to show potent bioactivities, including reduction of the tiller number on rice, and stimulation of seed germination in the root parasite Striga hermonthica. To exert both activities, two substituents on the phenyl ring of the molecules were important but at least a substituent at the 2-position must be an electron-withdrawing group. However, little is known about the effect of the properties of the substituents at the 2-position on bioactivities. Here, we found that different substituents at the 2-position give different preferences for bioactivities. Halogenated debranones were more effective than the others and SL agonist GR24 for inhibiting rice tiller but far less effective in the induction of S. hermonthica germination. Meanwhile, nitrile and methyl derivatives clearly stimulated the germination of S. hermonthica seeds. Although their IC50 values were 100 times higher than that of GR24 in the receptor competitive binding assay, their physiological activities were approximately 1/10 of GR24. These differences could be due to their uptake in plants and/or their physicochemical stability under our experimental conditions. These findings could support the design of more potent and selective SL agonists that could contribute to solving big agricultural issues.

11.
Plant J ; 105(4): 1026-1034, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211343

RESUMEN

Ectopic expression of the apple 2-oxoglutarate-dependent dioxygenase (DOX, 2ODD) gene, designated MdDOX-Co, is thought to cause the columnar shape of apple trees. However, the mechanism underlying the formation of such a unique tree shape remains unclear. To solve this problem, we demonstrated that Arabidopsis thaliana overexpressing MdDOX-Co contained reduced levels of biologically active gibberellin (GA) compared with wild type. In summary: (i) with biochemical approaches, the gene product MdDOX-Co was shown to metabolize active GA A4 (GA4 ) to GA58 (12-OH-GA4 ) in vitro. MdDOX-Co also metabolized its precursors GA12 and GA9 to GA111 (12-OH-GA12 ) and GA70 (12-OH-GA9 ), respectively; (ii) Of the three 12-OH-GAs, GA58 was still active physiologically, but not GA70 or GA111 ; (iii) Arabidopsis MdDOX-Co OE transformants converted exogenously applied deuterium-labeled (d2 )-GA12 to d2 -GA111 but not to d2 -GA58 , whereas transformants converted applied d2 -GA9 to d2 -GA58 ; (iv) GA111 is converted poorly to GA70 by GA 20-oxidases in vitro when GA12 is efficiently metabolized to GA9 ; (v) no GA58 was detected endogenously in MdDOX-Co OE transformants. Overall, we conclude that 12-hydroxylation of GA12 by MdDOX-Co prevents the biosynthesis of biologically active GAs in planta, resulting in columnar phenotypes.


Asunto(s)
Genes de Plantas/genética , Giberelinas/metabolismo , Malus/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Árboles/genética , Arabidopsis , Dioxigenasas/metabolismo , Genes de Plantas/fisiología , Ácidos Cetoglutáricos/metabolismo , Malus/crecimiento & desarrollo , Malus/metabolismo , Malus/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/fisiología
13.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255720

RESUMEN

Strigolactones (SLs) are carotenoid-derived plant hormones involved in the development of various plants. SLs also stimulate seed germination of the root parasitic plants, Striga spp. and Orobanche spp., which reduce crop yield. Therefore, regulating SL biosynthesis may lessen the damage of root parasitic plants. Biosynthetic inhibitors effectively control biological processes by targeted regulation of biologically active compounds. In addition, biosynthetic inhibitors regulate endogenous levels in developmental stage- and tissue-specific manners. To date, although some chemicals have been found as SL biosynthesis inhibitor, these are derived from only three lead chemicals. In this study, to find a novel lead chemical for SL biosynthesis inhibitor, 27 nitrogen-containing heterocyclic derivatives were screened for inhibition of SL biosynthesis. Triflumizole most effectively reduced the levels of rice SL, 4-deoxyorobanchol (4DO), in root exudates. In addition, triflumizole inhibited endogenous 4DO biosynthesis in rice roots by inhibiting the enzymatic activity of Os900, a rice enzyme that converts the SL intermediate carlactone to 4DO. A Striga germination assay revealed that triflumizole-treated rice displayed a reduced level of germination stimulation for Striga. These results identify triflumizole as a novel lead compound for inhibition of SL biosynthesis.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Imidazoles/farmacología , Lactonas/metabolismo , Germinación/efectos de los fármacos , Imidazoles/química , Estructura Molecular , Oryza/efectos de los fármacos , Oryza/metabolismo , Raíces de Plantas/efectos de los fármacos
14.
Mol Plant ; 13(11): 1654-1661, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32835886

RESUMEN

Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization. In this study, we developed easy-to-synthesize and highly efficient mimics of zaxinone (MiZax). We performed a structure-activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features. Using the obtained results, we designed several phenyl-based compounds synthesized with a high-yield through a simple method. Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant, promoting growth, and reducing SL content in roots and root exudates of wild-type plants. Moreover, these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions, and did not negatively impact mycorrhization. Taken together, MiZax are a promising tool for elucidating zaxinone biology and investigating rice development, and suitable candidates for combating Striga and increasing crop growth.


Asunto(s)
Agroquímicos/química , Agroquímicos/farmacología , Striga/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Imitación Molecular , Oryza/crecimiento & desarrollo , Relación Estructura-Actividad
15.
Front Plant Sci ; 11: 434, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373143

RESUMEN

Strigolactones (SLs) are a group of carotenoid derived plant hormones that play a key role in establishing plant architecture and adapting it to environmental changes, and are involved in plants response to biotic and abiotic stress. SLs are also released into the soil to serve as a chemical signal attracting beneficial mycorrhizal fungi. However, this signal also induces seed germination in root parasitic weeds that represent a major global threat for agriculture. This wide spectrum of biological functions has made SL research one of the most important current topics in fundamental and applied plant science. The availability of SLs is crucial for investigating SL biology as well as for agricultural application. However, natural SLs are produced in very low amounts, and their organic synthesis is quite difficult, which creates a need for efficient and easy-to-synthesize analogs and mimics. Recently, we have generated a set of SL analogs, Methyl Phenlactonoates (MPs), which resemble the non-canonical SL carlactonoic acid. In this paper, we describe the development and characterization of a new series of easy-to-synthesize MPs. The new analogs were assessed with respect to regulation of shoot branching, impact on leaf senescence, and induction of seed germination in different root parasitic plants species. Some of the new analogs showed higher efficiency in inhibiting shoot branching as well as in triggering parasitic seed germination, compared to the commonly used GR24. MP16 was the most outstanding analog showing high activity in different SL biological functions. In summary, our new analogs series contains very promising candidates for different applications, which include the usage in studies for understanding different aspects of SL biology as well as large scale field application for combating root parasitic weeds, such as Striga hermonthica that devastates cereal yields in sub-Saharan Africa.

16.
Asian J Endosc Surg ; 13(3): 448-452, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31692277

RESUMEN

Robot-assisted surgery has advanced rapidly since the 1980s. However, new equipment is still needed to overcome problems in conventional endoscopic surgery, including unique risks, such as camera shake and communication difficulties between the operator and the scopist. EMARO, an endoscope manipulator robot, is the world's first pneumatically driven endoscope-holder robot that can operate flexibly and smoothly with the use of air pressure. We herein report the surgical experience of using EMARO in totally extraperitoneal inguinal hernia repair. A 77-year-old Japanese man presented with bulging in the right groin area. After we diagnosed a right inguinal hernia, endoscopic inguinal hernia repair was performed. We selected the totally extraperitoneal approach with EMARO. The endoscopic procedure time was 100 minutes, and no intraoperative complications occurred. EMARO brings together features of smooth motion and good manipulation performance. This operation was performed safely and was comparable to a conventional operation completed with human assistants. Solo surgery with EMARO was beneficial in this inguinal hernia patient.


Asunto(s)
Hernia Inguinal , Laparoscopía , Robótica , Anciano , Endoscopios , Hernia Inguinal/cirugía , Herniorrafia , Humanos , Masculino
17.
J Agric Food Chem ; 67(22): 6143-6149, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083983

RESUMEN

Strigolactones (SLs) are one of the plant hormones that control several important agronomic traits, such as shoot branching, leaf senescence, and stress tolerance. Manipulation of the SL biosynthesis can increase the crop yield. We previously reported that a triazole derivative, TIS108, inhibits SL biosynthesis. In this study, we synthesized a number of novel TIS108 derivatives. Structure-activity relationship studies revealed that 4-(2-phenoxyethoxy)-1-phenyl-2-(1 H-1,2,4-triazol-1-yl)butan-1-one (KK5) inhibits the level of 4-deoxyorobanchol in roots more strongly than TIS108. We further found that KK5-treated Arabidopsis showed increased branching phenotype with the upregulated gene expression of AtMAX3 and AtMAX4. These results indicate that KK5 is a specific SL biosynthesis inhibitor in rice and Arabidopsis.


Asunto(s)
Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Terpenos/antagonistas & inhibidores , Triazoles/química , Triazoles/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/genética , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Triazoles/síntesis química
18.
Front Plant Sci ; 10: 353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001294

RESUMEN

Strigolactones (SLs) regulate plant development and induce seed germination in obligate root parasitic weeds, e.g. Striga spp. Because organic synthesis of natural SLs is laborious, there is a large need for easy-to-synthesize and efficient analogs. Here, we investigated the effect of a structural modification of the D-ring, a conserved structural element in SLs. We synthesized and investigated the activity of two analogs, MP13 and MP26, which differ from previously published AR8 and AR36 only in the absence of methylation at C-3'. The de-methylated MP13 and MP26 were much more efficient in regulating plant development and inducing Striga seed germination, compared with AR8. Hydrolysis assays performed with purified Striga SL receptor and docking of AR8 and MP13 to the corresponding active site confirmed and explained the higher activity. Field trials performed in a naturally Striga-infested African farmer's field unraveled MP13 as a promising candidate for combating Striga by inducing germination in host's absence. Our findings demonstrate that methylation of the C-3' in D-ring in SL analogs has a negative impact on their activity and identify MP13 and, particularly, MP26 as potent SL analogs with simple structures, which can be employed to control Striga, a major threat to global food security.

19.
Pest Manag Sci ; 75(9): 2353-2359, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30843315

RESUMEN

Strigolactones (SLs) are carotenoid-derived plant secondary metabolites that play important roles in various aspects of plant growth and development as plant hormones, and in rhizosphere communications with symbiotic microbes and also root parasitic weeds. Therefore, sophisticated regulation of the biosynthesis, perception and functions of SLs is expected to promote symbiosis of beneficial microbes including arbuscular mycorrhizal (AM) fungi and also to retard parasitism by devastating root parasitic weeds. We have developed SL mimics with different skeletons, SL biosynthesis inhibitors acting at different biosynthetic steps, SL perception inhibitors that covalently bind to the SL receptor D14, and SL function inhibitors that bind to the serine residue at the catalytic site. In greenhouse pot tests, TIS108, an azole-type SL biosynthesis inhibitor effectively reduced numbers of attached root parasites Orobanche minor and Striga hermonthica without affecting their host plants; tomato and rice, respectively. AM colonization resulted in weak but distinctly enhanced plant resistance to pathogens. SL mimics can be used to promote AM symbiosis and to reduce the application rate of systemic-acquired resistance inducers which are generally phytotoxic to horticultural crops. © 2019 Society of Chemical Industry.


Asunto(s)
Agricultura/métodos , Lactonas/metabolismo , Micorrizas/fisiología , Raíces de Plantas/parasitología , Malezas/fisiología , Control de Malezas , Simbiosis
20.
Mol Plant ; 12(1): 44-58, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30391752

RESUMEN

Strigolactones, a class of plant hormones with multiple functions, mediate plant-plant and plant-microorganism communications in the rhizosphere. In this study, we developed potent strigolactone antagonists, which covalently bind to the strigolactone receptor D14, by preparing an array of triazole urea compounds. Using yeast two-hybrid and rice-tillering assays, we identified a triazole urea compound KK094 as a potent inhibitor of strigolactone receptors. Liquid chromatography-tandem mass spectrometry analysis and X-ray crystallography revealed that KK094 was hydrolyzed by D14, and that a reaction product of this degradation covalently binds to the Ser residue of the catalytic triad of D14. Furthermore, we identified two triazole urea compounds KK052 and KK073, whose effects on D14-D53/D14-SLR1 complex formation were opposite due to the absence (KK052) or presence (KK073) of a trifluoromethyl group on their phenyl ring. These results demonstrate that triazole urea compounds are potentially powerful tools for agricultural application and may be useful for the elucidation of the complicated mechanism underlying strigolactone perception.


Asunto(s)
Lactonas/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Triazoles/metabolismo , Urea/metabolismo , Cristalografía por Rayos X , Regulación de la Expresión Génica de las Plantas , Lactonas/química , Lactonas/farmacología , Oryza/química , Oryza/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Transducción de Señal , Triazoles/química , Triazoles/farmacología , Urea/química , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA