Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2405933121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39312652

RESUMEN

Thin-film devices that transduce the chemical activity of ions into electronic signals are essential components in various applications, including healthcare diagnostics and environmental monitoring. Combinations of organic semiconductors (OSCs) and ion-selective materials have been explored for developing solution-processable ion sensors. However, the necessity of reference electrodes (REs) and operational stability in ion-permeable OSCs have posed questions regarding whether reliable measurements with thin-film components are attainable with OSCs. Herein, we report electric double-layer transistors (EDLTs) with OSCs in single-crystal forms for ion sensing. Our EDLTs demonstrated high operational stability, with a one-to-one relationship between the source electrode potential and device resistance, and served as quasi-REs (qRE). When our EDLT is served as qRE, its drift was as small as 0.5 mV/h and comparable to that of commonly employed REs. In our system, the semiconductor-electrolyte interface is self-passivated by the alkyl chains of OSCs in single-crystal structures, with the two-dimensional transport layer appearing unaltered upon gating. EDLT arrays with ion-selective and nonselective liquid junctions enable ion concentration sensing without a conventional RE. These findings provide opportunities to develop thin-film devices based on OSCs for easy integration and reliable measurements.

2.
Nature ; 622(7982): 285-291, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821588

RESUMEN

The chemical doping of molecular semiconductors is based on electron-transfer reactions between the semiconductor and dopant molecules; here, the redox potential of the dopant is key to control the Fermi level of the semiconductor1,2. The tunability and reproducibility of chemical doping are limited by the availability of dopant materials and the effects of impurities such as water. Here we focused on proton-coupled electron-transfer (PCET) reactions, which are widely used in biochemical processes3,4; their redox potentials depend on an easily handled parameter, that is, proton activity. We immersed p-type organic semiconductor thin films in aqueous solutions with PCET-based redox pairs and hydrophobic molecular ions. Synergistic reactions of PCET and ion intercalation resulted in efficient chemical doping of crystalline organic semiconductor thin films under ambient conditions. In accordance with the Nernst equation, the Fermi levels of the semiconductors were controlled reproducibly with a high degree of precision-a thermal energy of about 25 millielectronvolts at room temperature and over a few hundred millielectronvolts around the band edge. A reference-electrode-free, resistive pH sensor based on this method is also proposed. A connection between semiconductor doping and proton activity, a widely used parameter in chemical and biochemical processes, may help create a platform for ambient semiconductor processes and biomolecular electronics.

3.
Adv Sci (Weinh) ; 10(29): e2207440, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37712117

RESUMEN

Large-area single-crystalline thin films of n-type organic semiconductors (OSCs) fabricated via solution-processed techniques are urgently demanded for high-end electronics. However, the lack of molecular designs that concomitantly offer excellent charge-carrier transport, solution-processability, and chemical/thermal robustness for n-type OSCs limits the understanding of fundamental charge-transport properties and impedes the realization of large-area electronics. The benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) π-electron system with phenethyl substituents (PhC2 -BQQDI) demonstrates high electron mobility and robustness but its strong aggregation results in unsatisfactory solubility and solution-processability. In this work, an asymmetric molecular design approach is reported that harnesses the favorable charge transport of PhC2 -BQQDI, while introducing alkyl chains to improve the solubility and solution-processability. An effective synthetic strategy is developed to obtain the target asymmetric BQQDI (PhC2 -BQQDI-Cn ). Interestingly, linear alkyl chains of PhC2 -BQQDI-Cn (n = 5-7) exhibit an unusual molecular mimicry geometry with a gauche conformation and resilience to dynamic disorders. Asymmetric PhC2 -BQQDI-C5 demonstrates excellent electron mobility and centimeter-scale continuous single-crystalline thin films, which are two orders of magnitude larger than that of PhC2 -BQQDI, allowing for the investigation of electron transport anisotropy and applicable electronics.

4.
J Colloid Interface Sci ; 651: 769-784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37336654

RESUMEN

The air/liquid interface is a superior platform to create nanosheets of materials by promoting spontaneous two-dimensional growth of components. Metal-organic frameworks (MOFs)-intrinsically porous crystals-with π-conjugated triphenylene-based ligands show high electrical conductivities. Forming nanosheets of such conductive MOFs should enable their use in electronic devices. Although highly conductive MOF nanosheets have been created at the air/liquid interface, direct control of their continuity, morphology, thickness, crystallinity, and orientation directly influencing device performance remains as an issue to be addressed. Here, we present detailed insights into the formation process of electrically conductive MOF nanosheets composed of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and Ni2+ ions (HITP-Ni-NS) at the air/liquid interface. The morphological and structural features of HITP-Ni-NS strongly depend on the standing time-the time without any external actions involved, but leaving the interface undisturbed after setting the ligand solution onto the metal-ion solution. We find that the fundamental features of HITP-Ni-NS are determined by the standing time with conductivity sensitively influenced by such pre-determined HITP-Ni-NS characteristics. These findings will lead towards the establishment of a rational strategy for creating MOF nanosheets at the air/liquid interface with desired properties, thereby accelerating their use in diverse potential applications.

5.
Phys Chem Chem Phys ; 25(20): 14496-14501, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37190947

RESUMEN

The chemical structures and morphologies of organic semiconductors (OSCs) and gate dielectrics have been widely investigated to improve the electrical performances of organic thin-film transistors (OTFTs) because the charge transport therein is a phenomenon at the semiconductor-dielectric interfaces. Here, solid and ionic gel gate dielectrics were adopted on the lower and upper surfaces, respectively, of a single, two molecule-thick single crystals of p-type OSCs to study the charge transport properties at individual interfaces between the morphologically compatible OSC surface and different gate dielectrics. Using the four-probe method, the solid and ionic gel interfaces were found to exhibit hole mobilities of 9.3 and 2.2 cm2 V-1 s-1, respectively, which revealed the crucial impact of the gate dielectric materials on the interfacial charge transport. Interestingly, when gate biases are applied through both dielectrics, i.e., under the solid/ionic gel dual-gate transistor operation, the hole mobility at the solid gate interface is improved up to 14.7 cm2 V-1 s-1, which is 1.5 times greater than that assessed without the ionic gel gate. This improvement can be attributed to the electric double layer formed at the ionic gel/uniform crystal surface, which provides a close-to-ideal charge transport interface through dramatic trap-filling. Therefore, the present dual-gate transistor technique will be promising for investigating the intrinsic charge-transport capabilities of OSCs.

6.
Angew Chem Int Ed Engl ; 62(4): e202206417, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36031586

RESUMEN

Synthetically versatile electron-deficient π-electron systems are urgently needed for organic electronics, yet their design and synthesis are challenging due to the low reactivity from large electron affinities. In this work, we report a benzo[de]isoquinolino[1,8-gh]quinoline diamide (BQQDA) π-electron system. The electron-rich condensed amide as opposed to the generally-employed imide provides a suitable electronic feature for chemical versatility to tailor the BQQDA π-electron system for various electronic applications. We demonstrate an effective synthetic method to furnish the target BQQDA parent structure, and highly selective functionalization can be performed on bay positions of the π-skeleton. In addition, thionation of BQQDA can be accomplished under mild conditions. Fine-tuning of fundamental properties and supramolecular packing motifs are achieved via chemical modifications, and the cyanated BQQDA organic semiconductor demonstrates a high air-stable electron-carrier mobility.

7.
Sci Rep ; 12(1): 16009, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207311

RESUMEN

Organic thin-film transistors (OTFTs) are promising building blocks of flexible printable electronic devices. Similar to inorganic FETs, OTFTs are heterostructures consisting of metals, insulators, and semiconductors, in which nanoscale interfaces between different components should be precisely engineered. However, OTFTs use noble metals, such as gold, as electrodes, which has been a bottleneck in terms of cost reduction and low environmental loading. In this study, we demonstrate that graphite-based carbon electrodes can be deposited and patterned directly onto an organic single-crystalline thin film via electrostatic spray coating. The present OTFTs exhibited reasonably high field-effect mobilities of up to 11 cm2 V-1 s-1 for p-type and 1.4 cm2 V-1 s-1 for n-type with no significant deterioration during electrostatic spray processes. We also demonstrate two significant milestones from the viewpoint of material science: a complementary circuit, an inverter consisting of p- and n-type OTFTs, and an operatable metal-free OTFT composed of fully carbon-based materials. These results constitute a key step forward in the further development of printed metal-free integrated circuits.

8.
J Am Chem Soc ; 144(25): 11159-11167, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35701868

RESUMEN

The hole-carrier transport of organic semiconductors is widely known to occur via intermolecular orbital overlaps of the highest occupied molecular orbitals (HOMO), though the effect of other occupied molecular orbitals on charge transport is rarely investigated. In this work, we first demonstrate evidence of a mixed-orbital charge transport concept in the high-performance N-shaped decyl-dinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (C10-DNBDT-NW), where electronic couplings of the second HOMO (SHOMO) and third HOMO (THOMO) also contribute to the charge transport. We then present the molecular design of an N-shaped bis(naphtho[2',3':4,5]thieno)[2,3-b:2',3'-e]pyrazine (BNTP) π-electron system to induce more pronounced mixed-orbital charge transport by incorporating the pyrazine moiety. An effective synthetic strategy for the pyrazine-fused extended π-electron system is developed. With substituent engineering, the favorable two-dimensional herringbone assembly can be obtained with BNTP, and the decylphenyl-substituted BNTP (C10Ph-BNTP) demonstrates large electronic couplings involving the HOMO, SHOMO, and THOMO in the herringbone assembly. C10Ph-BNTP further shows enhanced mixed-orbital charge transport when the electronic couplings of all three occupied molecular orbitals are taken into consideration, which results in a high hole mobility up to 9.6 cm2 V-1 s-1 in single-crystal thin-film organic field-effect transistors. The present study provides insights into the contribution of HOMO, SHOMO, and THOMO to the mixed-orbital charge transport of organic semiconductors.

10.
Acc Chem Res ; 55(5): 660-672, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35157436

RESUMEN

ConspectusOrganic semiconductors (OSCs) have attracted much attention because of their potential applications for flexible and printed electronic devices and thus have been extensively investigated in a variety of research fields, such as organic chemistry, solid-state physics, and device physics and engineering. Organic thin-film transistors (OTFTs), a class of OSC-based devices, have been expected to be an alternative of silicon-based metal oxide semiconductor field-effect transistors (MOSFETs), which is the indispensable element for most of the current electronic devices. However, the noncovalently aggregated, van der Waals solid nature of the OSCs, by contrast to covalently bound silicon, conventionally exhibits lower carrier mobilities, limiting the practical applications of OTFTs. In particular, electron-transporting (i.e., n-type) OSCs lag behind their hole-transporting (p-type) counterparts in carrier mobility and ambient stability as OTFTs. This is primarily because of the difficulty in achieving compatibility between the aggregated structure exhibiting excellent carrier mobility and that with enough electron affinity. Recent understandings of carrier transport in OSCs explain that large and two-dimensionally isotropic transfer integrals coupled with small fluctuations are crucial for high carrier mobilities. In addition, from a practical point of view, the compatibility with practical device processes is highly required. Rational molecular design principles, therefore, are still demanded for developing OSCs and OTFTs toward high-end device applications.Herein, we will show our recent progress in the development of n-type OSCs with the key π-electron core (π-core) of benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) on the basis of single-crystal OTFT technologies and the band-transport model enabled by two-dimensional molecular packing arrangements. The critical point is the introduction of electronegative nitrogen atoms into the π-core: the nitrogen atoms in BQQDI not only deepen the molecular orbital energies but also allow hydrogen-bonding-like attractive intermolecular interactions to control the aggregated structures, unlike the conventional role of the nitrogen introduced into OSCs only for the former role. Hence, the BQQDI analogues exhibit air-stable OTFT behavior and two-dimensional brickwork packing structures. Specifically, phenethyl-substituted analogue (PhC2-BQQDI) has been shown as the first principal BQQDI-based material, demonstrating solution-processable thin-film single crystals, fewer anisotropic transfer integrals, and an effective suppression of molecular motions, leading to band-like electron-transport properties and stress-durable n-channel OTFT performances, in conjunction with the support of computational calculations. Insights into more fundamental points of view have been found by side-chain derivatization and OTFT studies on polycrystalline and single-crystal films. We hope that this Account provides readers with new strategies for designing high-performance OSCs by two-dimensional control of the aggregated structures.

11.
Langmuir ; 38(17): 5237-5247, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34873909

RESUMEN

In this study, we advanced the conventional Langmuir-Blodgett (LB) method to a high-temperature range (above 100 °C) using a newly manufactured LB machine, which is adaptable to a high-boiling-point subphase, as a universally usable apparatus. A sophisticated trough design, with homogeneous heating capability up to approximately 200 °C, together with automatic film compression and Langmuir-Schaefer type film transfer, enabled the fabrication of highly aligned thin films of polymeric semiconductors with uniaxial alignment of polymer backbones, which is desirable for efficient charge transport. Herein, ultrathin films of semicrystalline thiophene-based semiconductors were prepared on ethylene glycol and heated to 80 °C. The analyses of the transferred films with pressure-area isotherms, atomic force microscopy (AFM), polarized optical microscopy (POM), and grazing-incidence wide-angle X-ray scattering (GIWAXS) indicated that the proposed high-temperature LB method allows ideal deposition of high-quality ultrathin films with molecular layer precision at the selected high-temperature conditions. Furthermore, preparing thin-film donor-acceptor-type copolymers in ionic liquids at high temperatures (up to 140 °C) was a challenging task that was successfully demonstrated in this study. Highly ordered thin films of donor-acceptor polymers with a uniaxial backbone orientation were obtained only at 140 °C. The obtained semicrystalline thin films with uniaxially aligned polymer backbones significantly contribute to the two-dimensional overlap of molecular orbitals, which is likely to promote charge transport. The use of the manufactured automatic LB machines is advantageous for better quality films prepared at higher temperatures (even above 100 °C) from various technical viewpoints, including homogeneous heating, constant compression, and automatic film transfer. The novel methodology proposed herein expands the possibilities of the Hyper 100 °C Langmuir-Blodgett technique, which has not been accessible by the conventional LB method with the aqueous subphase.

12.
ACS Appl Mater Interfaces ; 13(45): 54570-54578, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34706544

RESUMEN

Although most metal-organic frameworks (MOFs)─highly porous crystalline metal complex networks with structural and functional varieties─are electrically insulating, high electrical conduction has been recently demonstrated in MOFs while retaining permanent porosity. Usability of electronically active MOFs effectively emerges when they are created in a thin-film state as required in major potential applications such as chemiresistive sensors, supercapacitors, and electrode catalysts. Thin-film morphology including crystallinity, thickness, density, roughness, and orientation sensitively influences device performance. Fine control of such morphological parameters still remains as a main issue to be addressed. Here, we report a bottom-up procedure of assembling a conductive MOF nanosheet composed of 2,3,6,7,10,11-hexaiminotriphenylene molecules and nickel ions (HITP-Ni-NS). Creation of HITP-Ni-NS is achieved by applying air/liquid (A/L) interfacial bottom-up synthesis. HITP-Ni-NS has a multilayered structure with 14 nm thickness and is endowed with high crystallinity and uniaxial orientation, demonstrated by synchrotron X-ray crystallography. Facile transferability of HITP-Ni-NS assembled at air/liquid interfaces to any desired substrate enables us to measure its electrical conductivity, recorded as 0.6 S cm-1─highest among those of triphenylene-based MOF nanosheets with a thickness lower than 100 nm.

13.
J Phys Chem Lett ; 12(40): 9868-9873, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34606722

RESUMEN

The dissociation of O2 molecules chemisorbed on silver surfaces is an essential reaction in industry, and the dissociation mechanism has long attracted attention. The detailed dissociation mechanism was studied at the single-molecule level on Ag(110) by using a scanning tunneling microscope (STM). The dissociation reaction was found to be predominantly triggered by inelastically tunneled holes from the STM tip due to the significantly distributed density of states below the Fermi level of the substrate. A combination of action spectroscopy with the STM and density functional theory calculations revealed that the O2 dissociation reaction is caused by direct ladder-climbing excitation of the high-order overtones of the O-O stretching mode arising from anharmonicity enhanced by molecule-surface interactions.

14.
Adv Sci (Weinh) ; 8(24): e2101998, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34713616

RESUMEN

Increasing the doping level of semiconducting polymer using strong dopants is essential for achieving good electrical conductivity. As for p-dopant, raising the electron affinity of a neutral compound through the dense introduction of electron-withdrawing group has always been the predominant strategy to achieve strong dopant. However, this simple and intuitive strategy faces extendibility, accessibility, and stability issues for further development. Herein, the use of dicationic state of tetraaryl benzidine (TAB2+ ) in conjunction with bis(trifluoromethylsulfonyl)imide anion (TFSI- ) as a strong and atmospherically stable p-dopant (TAB-2TFSI), for which the concept is hinted from a rapid and spontaneous dimerization of radical cation dopant, is demonstrated. TAB-2TFSI possesses a large redox potential such that it would have deteriorated when in contact with H2 O. However, no trace of degradation after 1 year of storage under atmospheric conditions is observed. When doping the state-of-the-art semiconducting polymer with TAB-2TFSI, a high doping level together with significantly enhanced crystallinity is achieved which led to an electrical conductivity as high as 656 S cm-1 . The concept of utilizing charged molecule as a dopant is highly versatile and will potentially accelerate the development of a strong yet stable dopant.

15.
Nat Mater ; 20(10): 1401-1406, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34489565

RESUMEN

A highly conductive metallic gas that is quantum mechanically confined at a solid-state interface is an ideal platform to explore non-trivial electronic states that are otherwise inaccessible in bulk materials. Although two-dimensional electron gases have been realized in conventional semiconductor interfaces, examples of two-dimensional hole gases, the counterpart to the two-dimensional electron gas, are still limited. Here we report the observation of a two-dimensional hole gas in solution-processed organic semiconductors in conjunction with an electric double layer using ionic liquids. A molecularly flat single crystal of high-mobility organic semiconductors serves as a defect-free interface that facilitates two-dimensional confinement of high-density holes. A remarkably low sheet resistance of 6 kΩ and high hole-gas density of 1014 cm-2 result in a metal-insulator transition at ambient pressure. The measured degenerate holes in the organic semiconductors provide an opportunity to tailor low-dimensional electronic states using molecularly engineered heterointerfaces.

16.
Angew Chem Int Ed Engl ; 60(35): 19097-19101, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34129256

RESUMEN

A desymmetrization strategy has been devised in the design of molecular cylinders to maximize the dissymmetry factor relevant to circularly polarized light. Although the highest dissymmetry factor of organic molecules was previously achieved with a chiral belt-persistent cycloarylene having magnetic and electric transition dipole moments in parallel, we noticed that an unbalanced magnitude of two moments was detrimental for higher dissymmetry factors. In this study, a molecular cylinder was desymmetrized by arraying doped and undoped panels via stereoselective cross-coupling macrocyclization. The desymmetrization succeeded in balancing two moments by reducing the electric transition moment at the global minimum but failed to maximize the dissymmetry factor. Structural studies revealed that the dissymmetry factor is sensitive to subtle structural fluctuations, while the rotatory strength is not affected. This study is important for the development of chiroptical materials.

17.
Adv Sci (Weinh) ; 8(3): 2002065, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552854

RESUMEN

A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 1013 cm-2 at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.

18.
J Phys Chem Lett ; 12(8): 2095-2101, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33625238

RESUMEN

Operational stability, such as long-term ambient durability and bias stress stability, is one of the most significant parameters in organic thin-film transistors (OTFTs). The understanding of such stabilities has been mainly devoted to energy levels of frontier orbitals, thin-film morphologies, and device configuration involving gate dielectrics and electrodes, whereas the roles of molecular and aggregated structural features in device stability are seldom discussed. In this Letter, we report a remarkable enhancement of operational stability, especially bias stress, of n-channel single-crystal OTFTs derived from a replacement of phenyl with perfluorophenyl groups in the side chain. Because of the several-molecule-thick single-crystal nature employed for the OTFTs, the crystal-surface properties are thought to be critical, where the surface structure composed of perfluorophenyl moieties could suppress interactions between environmental species and field-induced carriers owing to increased hydrophobicity and steric protection of π-conjugated units.

19.
Commun Chem ; 4(1): 88, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-36697533

RESUMEN

The interface of organic semiconductor films is of particular importance with respect to various electrochemical devices such as transistors and solar cells. In this study, we developed a new spectroscopic system, namely electrochemical attenuated total reflectance ultraviolet (EC-ATR-UV) spectroscopy, which can access the interfacial area. Ionic liquid-gated organic field-effect transistors (IL-gated OFETs) were successfully fabricated on the ATR prism. Spectral changes of the organic semiconductor were then investigated in relation to the gate voltage application and IL species, and the magnitude of spectral changes was found to correlate positively with the drain current. Additionally, the Stark shifts of not only the organic semiconductor, but also of the IL on the organic semiconductor films were detected. This new method can be applied to other electrochemical devices such as organic thin film solar cells, in which the interfacial region is crucial to their functioning.

20.
Commun Chem ; 4(1): 155, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36697635

RESUMEN

Benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) is an n-type organic semiconductor that has shown unique multi-fold intermolecular hydrogen-bonding interactions, leading to aggregated structures with excellent charge transports and electron mobility properties. However, the strong intermolecular anchoring of BQQDI presents challenges for fine-tuning the molecular assembly and improving the semiconducting properties. Herein, we report the design and synthesis of two BQQDI derivatives with phenyl- and cyclohexyl substituents (Ph-BQQDI and Cy6-BQQDI), where the two organic semiconductors show distinct molecular assemblies and degrees of intermolecular orbital overlaps. In addition, the difference in their packing motifs leads to strikingly different band structures that give rise to contrasting charge-transport capabilities. More specifically, Cy6-BQQDI bearing bulky substituents exhibits isotropic intermolecular orbital overlaps resulting in equal averaged transfer integrals in both π-π stacking directions, even when dynamic disorders are taken into account; whereas Ph-BQQDI exhibits anisotropic averaged transfer integrals in these directions. As a result, Cy6-BQQDI shows excellent device performances in both single-crystalline and polycrystalline thin-film organic field-effect transistors up to 2.3 and 1.0 cm2 V-1 s-1, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA