Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Biophys Res Commun ; 614: 161-168, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35597153

RESUMEN

Vacuoles and lysosomes are organelles involved in the degradation of cytoplasmic proteins and organelles. Vacuolar morphology is dynamically regulated by fission and fusion in budding yeast. Vacuolar fusion is elicited in nutrient-depleted conditions and mediated by inactivation of target of rapamycin complex 1 (TORC1) protein kinase. However, it is unknown whether and how vacuolar morphology affects macroautophagy and microautophagy, which are induced by nutrient starvation and TORC1 inactivation. Here, we developed a system to control vacuolar fission in budding yeast. Vacuolar fragmentation promoted microautophagy but not macroautophagy. Vacuolar fragmentation caused multiple nucleus-vacuole junctions. Multiple vacuoles caused by vacuolar fragmentation also improved micronucleophagy (microautophagic degradation of a portion of the nucleus). However, vacuolar morphology did not impact nucleolar remodeling, condensation of the rDNA (rRNA gene) region, or separation of ribosomal DNA from nucleolar proteins, which is evoked by TORC1 inactivation. Thus, this study provides insights into the impacts of vacuolar/lysosomal morphology on macroautophagy and microautophagy.


Asunto(s)
Macroautofagia , Microautofagia , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Vacuolas , Autofagia , ADN Ribosómico/genética , Macroautofagia/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Microautofagia/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Vacuolas/metabolismo
2.
Biochem Biophys Res Commun ; 611: 46-52, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35477092

RESUMEN

When asynchronously growing cells suffer from nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase, the rDNA (rRNA gene) region is condensed in budding yeast Saccharomyces cerevisiae, which is executed by condensin and Cdc14 protein phosphatase. However, it is unknown whether these mitotic factors can condense the rDNA region in nutrient-starved interphase cells. Here, we show that condensin is not involved in TORC1 inactivation-induced rDNA condensation in G1 cells. Instead, the high-mobility group protein Hmo1 drove this process. The histone deacetylase Rpd3 and Cdc14, which repress rRNA transcription, were both required for the interphase rDNA condensation. Furthermore, interphase rDNA condensation necessitated CLIP and cohibin that tether rDNA to inner nuclear membranes. Finally, we showed that Hmo1, CLIP, Rpd3, and Cdc14 were required for survival in nutrient-starved G1 cells. Thus, this study disclosed novel features of interphase chromosome condensation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN , Proteínas del Grupo de Alta Movilidad/genética , Interfase , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos , Nutrientes , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
iScience ; 25(2): 103675, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141499

RESUMEN

Unsatisfied kinetochore-microtubule attachment activates the spindle assembly checkpoint to inhibit the metaphase-anaphase transition. However, some cells eventually override mitotic arrest by mitotic slippage. Here, we show that inactivation of TORC1 kinase elicits mitotic slippage in budding yeast and human cells. Yeast mitotic slippage was accompanied with aberrant aspects, such as degradation of the nucleolar protein Net1, release of phosphatase Cdc14, and anaphase-promoting complex/cyclosome (APC/C)-Cdh1-dependent degradation of securin and cyclin B in metaphase. This mitotic slippage caused chromosome instability. In human cells, mammalian TORC1 (mTORC1) inactivation also invoked mitotic slippage, indicating that TORC1 inactivation-induced mitotic slippage is conserved from yeast to mammalian cells. However, the invoked mitotic slippage in human cells was not dependent on APC/C-Cdh1. This study revealed an unexpected involvement of TORC1 in mitosis and provides information on undesirable side effects of the use of TORC1 inhibitors as immunosuppressants and anti-tumor drugs.

4.
J Mol Biol ; 434(2): 167360, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34798133

RESUMEN

Phosphatidylinositol 3-phosphate (PI3P), a scaffold of membrane-associated proteins required for diverse cellular events, is produced by Vps34-containing phosphatidylinositol 3-kinase (PI3K). PI3K complex I (PI3KCI)-generated PI3P is required for macroautophagy, whereas PI3K complex II (PI3KCII)-generated PI3P is required for endosomal sorting complex required for transport (ESCRT)-mediated multi-vesicular body (MVB) formation in late endosomes. ESCRT also promotes vacuolar membrane remodeling in microautophagy after nutrient starvation and inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Whereas PI3KCI and macroautophagy are critical for the nutrient starvation response, the physiological roles of PI3KCII and microautophagy during starvation are largely unknown. Here, we showed that PI3KCII-produced PI3P on vacuolar membranes is required for microautophagy induction and survival in nutrient-stressed conditions. PI3KCII is required for Vps27 (an ESCRT-0 component) recruitment and ESCRT-0 complex formation on vacuolar surfaces after TORC1 inactivation. Forced recruitment of Vps27 onto vacuolar membranes rescued the defect in microautophagy induction in PI3KCII-deficient cells, indicating that a critical role of PI3P on microautophagy induction is Vps27 recruitment onto vacuolar surfaces. Finally, vacuolar membrane-associated Vps27 was able to recover survival during nutrient starvation in cells lacking PI3KCII or Vps27. This study revealed that the PI3KCII-PI3P-Vps27 axis on vacuolar membranes is critical for ESCRT-mediated microautophagy induction and nutrient stress adaptation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Microautofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Membranas Intracelulares/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/metabolismo , Nutrientes , Fosfatos de Fosfatidilinositol , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción
5.
Biochem Biophys Res Commun ; 561: 158-164, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34023781

RESUMEN

Remodeling of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is critical for microautophagy induction in budding yeast. Nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicit recruitment of the ESCRT-0 complex (Vps27-Hse1) onto vacuolar membranes and ESCRT-mediated microautophagy induction. Mitotic protein phosphatase Cdc14 antagonizes TORC1-mediated phosphorylation in macroautophagy induction after nutrient starvation and TORC1 inactivation. Here, we report that Cdc14 downregulates microautophagy induction after TORC1 inactivation. Cdc14 dysfunction stimulated the vacuolar membrane recruitment of Hse1, but not Vps27, after TORC1 inactivation, promoting ESCRT-0 complex formation. Conversely, overexpression of CDC14 compromises Hse1 recruitment on vacuolar membranes and microautophagy induction after TORC1 inactivation. Thus, Cdc14 phosphatase regulates the fluxes of two types of autophagy in the opposite directions, namely, it elicits macroautophagy and attenuates microautophagy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas Intracelulares/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Membranas Intracelulares/patología , Microautofagia , Monoéster Fosfórico Hidrolasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Vacuolas/patología
6.
Biochem Biophys Res Commun ; 552: 1-8, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33740659

RESUMEN

The degradation of nucleolar proteins - nucleophagy - is elicited by nutrient starvation or the inactivation of target of rapamycin complex 1 (TORC1) protein kinase in budding yeast. Prior to nucleophagy, nucleolar proteins migrate to the nucleus-vacuole junction (NVJ), where micronucleophagy occurs, whereas rDNA (rRNA gene) repeat regions are condensed and escape towards NVJ-distal sites. This suggests that the NVJ controls nucleolar dynamics from outside of the nucleus after TORC1 inactivation, but its molecular mechanism is unclear. Here, we show that sorting nexin (SNX) Mdm1, an inter-organelle tethering protein at the NVJ, mediates TORC1 inactivation-induced nucleolar dynamics. Furthermore, Mdm1 was required for proper nucleophagic degradation of nucleolar proteins after TORC1 inactivation, where it was dispensable for the induction of nucleophagic flux itself. This indicated that nucleophagy and nucleolar dynamics are independently regulated by TORC1 inactivation. Finally, Mdm1 was critical for survival during nutrient starvation conditions. Mutations of SNX14, a human Mdm1 homolog, cause neurodevelopmental disorders. This study provides a novel insight into relationship between sorting nexin-mediated microautophagy and neurodevelopmental disorders.


Asunto(s)
Autofagia/genética , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Vacuolas/metabolismo , Antifúngicos/farmacología , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Eliminación de Gen , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Microscopía Fluorescente/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Factores de Transcripción/metabolismo
7.
Biochem Biophys Res Commun ; 550: 158-165, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33706099

RESUMEN

Chromosomes have their own territories and dynamically translocate in response to internal and external cues. However, whether and how territories and the relocation of chromosomes are controlled by other intracellular organelles remains unknown. Upon nutrient starvation and target of rapamycin complex 1 (TORC1) inactivation, micronucleophagy, which preferentially degrades nucleolar proteins, occurs at the nucleus-vacuole junction (NVJ) in budding yeast. Ribosomal DNA (rDNA) is condensed and relocated against the NVJ, whereas nucleolar proteins move towards the NVJ for micronucleophagic degradation, causing dissociation of nucleolar proteins from rDNA. These findings imply that the NVJ is the critical platform in the directional movements of rDNA and nucleolar proteins. Here, we show that cells lacking the NVJ (NVJΔ cells) largely lost rDNA condensation and rDNA-nucleolar protein separation after TORC1 inactivation. The macronucleophagy receptor Atg39, an outer nuclear membrane protein, accumulated at the NVJ and was degraded by micronucleophagy. These suggested that macronucleophagy is also dependent on the presence of the NVJ. However, micronucleophagy, but not macronucleophagy, was abolished in NVJΔ cells. This study clearly demonstrated that vacuoles controls intranuclear events, nucleolar dynamics, from outside of the nucleus via the NVJ under the control of TORC1.


Asunto(s)
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Saccharomyces cerevisiae/citología , Vacuolas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Núcleo Celular/genética , ADN Ribosómico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Viabilidad Microbiana , Proteínas Nucleares/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/genética
8.
Biochem Biophys Res Commun ; 529(3): 846-853, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32553629

RESUMEN

The yeast E2F functional homologs MBF (Mbp1/Swi6) and SBF (Swi4/Swi6) complexes are critical transcription factors for G1/S transition. The target of rapamycin complex 1 (TORC1) kinase promotes G1/S transition via upregulation of the G1 cyclin Cln3 that activates MBF and SBF in favorable nutrient conditions. Here, we show evidence that TORC1 directly regulates G1/S transition via MBF and SBF. Various proteins involved in G1/S transition, including Mbp1 and Swi4, but not Swi6, were largely lost after rapamycin treatment. TORC1 inactivation facilitated degradation of Mbp1 and Swi4. Mbp1 degradation was dependent on Skp1-Cullin1-F-box (SCF)-Grr1 and proteasomes. We identified a PEST-like degron in Mbp1. Mutant cells with an unstable Mbp1 protein were hypersensitive to rapamycin and more accumulated G1 cells in the absence and presence of rapamycin. This study revealed that TORC1 directly controls MBF/SBF-mediated G1/S transition in response to nutrient availability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Factores de Transcripción/metabolismo , Proliferación Celular , Fase G1 , Fase S , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA