Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
iScience ; 25(9): 104950, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36093056

RESUMEN

The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.

2.
J Am Chem Soc ; 144(30): 13673-13687, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857885

RESUMEN

Photoelectrochemical fuel generation is a promising route to sustainable liquid fuels produced from water and captured carbon dioxide with sunlight as the energy input. Development of these technologies requires photoelectrode materials that are both photocatalytically active and operationally stable in harsh oxidative and/or reductive electrochemical environments. Such photocatalysts can be discovered based on co-design principles, wherein design for stability is based on the propensity for the photocatalyst to self-passivate under operating conditions and design for photoactivity is based on the ability to integrate the photocatalyst with established semiconductor substrates. Here, we report on the synthesis and characterization of zinc titanium nitride (ZnTiN2) that follows these design rules by having a wurtzite-derived crystal structure and showing self-passivating surface oxides created by electrochemical polarization. The sputtered ZnTiN2 thin films have optical absorption onsets below 2 eV and n-type electrical conduction of 3 S/cm. The band gap of this material is reduced from the 3.36 eV theoretical value by cation-site disorder, and the impact of cation antisites on the band structure of ZnTiN2 is explored using density functional theory. Under electrochemical polarization, the ZnTiN2 surfaces have TiO2- or ZnO-like character, consistent with Materials Project Pourbaix calculations predicting the formation of stable solid phases under near-neutral pH. These results show that ZnTiN2 is a promising candidate for photoelectrochemical liquid fuel generation and demonstrate a new materials design approach to other photoelectrodes with self-passivating native operational surface chemistry.

3.
Opt Express ; 28(9): 13845-13860, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403851

RESUMEN

Ultra-thin photovoltaics offer the potential for increasing efficiency while minimizing costs. However, a suitable light trapping strategy is needed to reach the optically thick regime for otherwise thin-film structures. III-V materials can benefit from simple adjacent light trapping structures, if correctly designed. Here we present three strategies for a 300 nm thick GaAs cell using front photonic crystals, back photonic crystals, and both front and back combined, predicting a maximum photocurrent, Jsc=29.9 mA/cm2 under the radiative limit, including an enhanced absorption in the Urbach-tail. We analyze the increased absorption isolating the Fabry-Perot resonances, the single pass absorption and the scattered contribution from the incident light.

4.
J Am Chem Soc ; 142(18): 8421-8430, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279492

RESUMEN

Nitride materials feature strong chemical bonding character that leads to unique crystal structures, but many ternary nitride chemical spaces remain experimentally unexplored. The search for previously undiscovered ternary nitrides is also an opportunity to explore unique materials properties, such as transitions between cation-ordered and -disordered structures, as well as to identify candidate materials for optoelectronic applications. Here, we present a comprehensive experimental study of MgSnN2, an emerging II-IV-N2 compound, for the first time mapping phase composition and crystal structure, and examining its optoelectronic properties computationally and experimentally. We demonstrate combinatorial cosputtering of cation-disordered, wurtzite-type MgSnN2 across a range of cation compositions and temperatures, as well as the unexpected formation of a secondary, rocksalt-type phase of MgSnN2 at Mg-rich compositions and low temperatures. A computational structure search shows that the rocksalt-type phase is substantially metastable (>70 meV/atom) compared to the wurtzite-type ground state. Spectroscopic ellipsometry reveals optical absorption onsets around 2 eV, consistent with band gap tuning via cation disorder. Finally, we demonstrate epitaxial growth of a mixed wurtzite-rocksalt MgSnN2 on GaN, highlighting an opportunity for polymorphic control via epitaxy. Collectively, these findings lay the groundwork for further exploration of MgSnN2 as a model ternary nitride, with controlled polymorphism, and for device applications, enabled by control of optoelectronic properties via cation ordering.

5.
ACS Energy Lett ; 5(4): 1233-1242, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38435798

RESUMEN

Tandem and multijunction solar cells offer the only demonstrated path to terrestrial 1-sun solar cell efficiency over 30%. Three-terminal tandem (3TT) solar cells can overcome some of the limitations of two-terminal and four-terminal tandem solar cell designs. However, the coupled nature of the cells adds a degree of complexity to the devices themselves and the ways that their performance can be measured and reported. While many different configurations of 3TT devices have been proposed, there is no standard taxonomy to discuss the device structure or loading topology. This Perspective proposes a taxonomy for 3TT solar cells to enable a common nomenclature for discussing these devices and their performance. It also provides a brief history of three-terminal devices in the literature and demonstrates that many different 3TT devices can work at efficiencies above 30% if properly designed.

6.
Adv Mater ; 31(11): e1807406, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30672031

RESUMEN

The opportunity for enhanced functional properties in semiconductor solid solutions has attracted vast scientific interest for a variety of novel applications. However, the functional versatility originating from the additional degrees of freedom due to atomic composition and ordering comes along with new challenges in characterization and modeling. Developing predictive synthesis-structure-property relationships is prerequisite for effective materials design strategies. Here, a first-principles based model for property prediction in such complex semiconductor materials is presented. This framework incorporates nonequilibrium synthesis, dopants and defects, and the change of the electronic structure with composition and short range order. This approach is applied to ZnSnN2 (ZTN) which has attracted recent interest for photovoltaics. The unintentional oxygen incorporation and its correlation with the cation stoichiometry leads to the formation of a solid solution with dual sublattice mixing. A nonmonotonic doping behavior as a function of the composition is uncovered. The degenerate doping of near-stoichiometric ZTN, which is detrimental for potential applications, can be lowered into the 1017 cm-3 range in highly off-stoichiometric material, in quantitative agreement with experiments.

7.
ACS Appl Mater Interfaces ; 10(9): 8086-8091, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29441786

RESUMEN

Transparent conductive adhesives (TCAs) can enable conductivity between two substrates, which is useful for a wide range of electronic devices. Here, we have developed a TCA composed of a polymer-particle blend with ethylene-vinyl acetate as the transparent adhesive and metal-coated flexible poly(methyl methacrylate) microspheres as the conductive particles that can provide conductivity and adhesion regardless of the surface texture. This TCA layer was designed to be nearly transparent, conductive in only the out-of-plane direction, and of practical adhesive strength to hold the substrates together. The series resistance was measured at 0.3 and 0.8 Ω cm2 for 8 and 0.2% particle coverage, respectively, while remaining over 92% was transparent in both cases. For applications in photovoltaic devices, such as mechanically stacked multijunction III-V/Si cells, a TCA with 1% particle coverage will have less than 0.5% power loss due to the resistance and less than 1% shading loss to the bottom cell.

8.
J Appl Phys ; 119(18)2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27746508

RESUMEN

Semiconductor materials that can be doped both n-type and p-type are desirable for diode-based applications and transistor technology. Copper nitride (Cu3N) is a metastable semiconductor with a solar-relevant bandgap that has been reported to exhibit bipolar doping behavior. However, deeper understanding and better control of the mechanism behind this behavior in Cu3N is currently lacking in the literature. In this work, we use combinatorial growth with a temperature gradient to demonstrate both conduction types of phase-pure, sputter-deposited Cu3N thin films. Room temperature Hall effect and Seebeck effect measurements show n-type Cu3N with an electron density of 1017 cm-3 for low growth temperature (≈ 35 °C) and p-type with a hole density between 1015 cm-3 and 1016 cm-3 for elevated growth temperatures (50 °C to 120 °C). Mobility for both types of Cu3N was ≈ 0.1 cm2/Vs to 1 cm2/V. Additionally, temperature-dependent Hall effect measurements indicate that ionized defects are an important scattering mechanism in p-type films. By combining X-ray absorption spectroscopy and first-principles defect theory, we determined that VCu defects form preferentially in p-type Cu3N while Cui defects form preferentially in n-type Cu3N; suggesting that Cu3N is a compensated semiconductor with conductivity type resulting from a balance between donor and acceptor defects. Based on these theoretical and experimental results, we propose a kinetic defect formation mechanism for bipolar doping in Cu3N, that is also supported by positron annihilation experiments. Overall, the results of this work highlight the importance of kinetic processes in the defect physics of metastable materials, and provide a framework that can be applied when considering the properties of such materials in general.

9.
J Chem Phys ; 121(7): 3259-71, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15291638

RESUMEN

A previously developed molecular level model for lipid bilayers [G. Brannigan and F. L. H. Brown, J. Chem. Phys. 120, 1059 (2004)] is extended to allow for variations in lipid length and simulations under constant surface tension conditions. The dependence of membrane elasticity on bilayer thickness is obtained by adjusting lipid length at constant temperature and surface tension. Additionally, bilayer fluidity at various lipid lengths is quantified by analysis of a length versus temperature phase diagram at vanishing tension. Regions of solid, gel-like (hexatic) and fluid bilayer behavior are established by identification of phase boundaries. The main melting transition is found to be density driven; the melting temperature scales inversely with lipid length since thermal expansion increases with lipid aspect ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA