Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Nat Commun ; 15(1): 5042, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871707

RESUMEN

Mood disorders are an enigmatic class of debilitating illnesses that affect millions of individuals worldwide. While chronic stress clearly increases incidence levels of mood disorders, including major depressive disorder (MDD), stress-mediated disruptions in brain function that precipitate these illnesses remain largely elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding direct roles for serotonin in the precipitation and treatment of affective disorders. Our group recently demonstrated that serotonin epigenetically modifies histone proteins (H3K4me3Q5ser) to regulate transcriptional permissiveness in brain. However, this non-canonical phenomenon has not yet been explored following stress and/or AD exposures. Here, we employed a combination of genome-wide and biochemical analyses in dorsal raphe nucleus (DRN) of male and female mice exposed to chronic social defeat stress, as well as in DRN of human MDD patients, to examine the impact of stress exposures/MDD diagnosis on H3K4me3Q5ser dynamics, as well as associations between the mark and depression-related gene expression. We additionally assessed stress-induced/MDD-associated regulation of H3K4me3Q5ser following AD exposures, and employed viral-mediated gene therapy in mice to reduce H3K4me3Q5ser levels in DRN and examine its impact on stress-associated gene expression and behavior. We found that H3K4me3Q5ser plays important roles in stress-mediated transcriptional plasticity. Chronically stressed mice displayed dysregulated H3K4me3Q5ser dynamics in DRN, with both AD- and viral-mediated disruption of these dynamics proving sufficient to attenuate stress-mediated gene expression and behavior. Corresponding patterns of H3K4me3Q5ser regulation were observed in MDD subjects on vs. off ADs at their time of death. These findings thus establish a neurotransmission-independent role for serotonin in stress-/AD-associated transcriptional and behavioral plasticity, observations of which may be of clinical relevance to human MDD and its treatment.


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Núcleo Dorsal del Rafe , Histonas , Estrés Psicológico , Animales , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Histonas/metabolismo , Masculino , Femenino , Estrés Psicológico/metabolismo , Humanos , Antidepresivos/farmacología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Ratones , Serotonina/metabolismo , Ratones Endogámicos C57BL , Epigénesis Genética/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Derrota Social
2.
Sci Rep ; 14(1): 13859, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879556

RESUMEN

Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.


Asunto(s)
Biomarcadores , Trastornos Psicóticos , Seguimiento Ocular Uniforme , Humanos , Masculino , Femenino , Seguimiento Ocular Uniforme/fisiología , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/fisiopatología , Adulto , Adulto Joven , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/fisiopatología , Persona de Mediana Edad , Estudios de Casos y Controles , Adolescente
3.
Neuroscience ; 548: 69-80, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38697464

RESUMEN

Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.


Asunto(s)
Antidepresivos , Trastorno Depresivo Resistente al Tratamiento , Modelos Animales de Enfermedad , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico
4.
JAMA Psychiatry ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691387

RESUMEN

Importance: A significant need exists for new antipsychotic medications with different mechanisms of action, greater efficacy, and better tolerability than existing agents. Xanomeline is a dual M1/M4 preferring muscarinic receptor agonist with no direct D2 dopamine receptor blocking activity. KarXT combines xanomeline with the peripheral muscarinic receptor antagonist trospium chloride with the goal of reducing adverse events due to xanomeline-related peripheral muscarinic receptor activation. In prior trials, xanomeline-trospium chloride was effective in reducing symptoms of psychosis and generally well tolerated in people with schizophrenia. Objective: To evaluate the efficacy and safety of xanomeline-trospium vs placebo in adults with schizophrenia. Design, Setting, and Participants: EMERGENT-3 (NCT04738123) was a phase 3, multicenter, randomized, double-blind, placebo-controlled, 5-week trial of xanomeline-trospium in people with schizophrenia experiencing acute psychosis, conducted between April 1, 2021, and December 7, 2022, at 30 inpatient sites in the US and Ukraine. Data were analyzed from February to June 2023. Interventions: Participants were randomized 1:1 to receive xanomeline-trospium chloride (maximum dose xanomeline 125 mg/trospium 30 mg) or placebo for 5 weeks. Main Outcomes and Measures: The prespecified primary end point was change from baseline to week 5 in Positive and Negative Syndrome Scale (PANSS) total score. Secondary outcome measures were change from baseline to week 5 in PANSS positive subscale score, PANSS negative subscale score, PANSS Marder negative factor score, Clinical Global Impression-Severity score, and proportion of participants with at least a 30% reduction in PANSS total score. Safety and tolerability were also evaluated. Results: A total of 256 participants (mean [SD] age, 43.1 [11.8] years; 191 men [74.6%]; 156 of 256 participants [60.9%] were Black or African American, 98 [38.3%] were White, and 1 [0.4%] was Asian) were randomized (125 in xanomeline-trospium group and 131 in placebo group). At week 5, xanomeline-trospium significantly reduced PANSS total score compared with placebo (xanomeline-trospium , -20.6; placebo, -12.2; least squares mean difference, -8.4; 95% CI, -12.4 to -4.3; P < .001; Cohen d effect size, 0.60). Discontinuation rates due to treatment-emergent adverse events (TEAEs) were similar between the xanomeline-trospium (8 participants [6.4%]) and placebo (7 participants [5.5%]) groups. The most common TEAEs in the xanomeline-trospium vs placebo group were nausea (24 participants [19.2%] vs 2 participants [1.6%]), dyspepsia (20 participants [16.0%] vs 2 participants [1.6%]), vomiting (20 participants [16.0%] vs 1 participant [0.8%]), and constipation (16 participants [12.8%] vs 5 participants [3.9%]). Measures of extrapyramidal symptoms, weight gain, and somnolence were similar between treatment groups. Conclusions and Relevance: Xanomeline-trospium was efficacious and well tolerated in people with schizophrenia experiencing acute psychosis. These findings, together with the previously reported and consistent results from the EMERGENT-1 and EMERGENT-2 trials, support the potential of xanomeline-trospium to be the first in a putative new class of antipsychotic medications without D2 dopamine receptor blocking activity. Trial Registration: ClinicalTrials.gov Identifier: NCT04738123.

5.
Psychol Med ; 54(8): 1835-1843, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38357733

RESUMEN

BACKGROUND: Enlarged pituitary gland volume could be a marker of psychotic disorders. However, previous studies report conflicting results. To better understand the role of the pituitary gland in psychosis, we examined a large transdiagnostic sample of individuals with psychotic disorders. METHODS: The study included 751 participants (174 with schizophrenia, 114 with schizoaffective disorder, 167 with psychotic bipolar disorder, and 296 healthy controls) across six sites in the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium. Structural magnetic resonance images were obtained, and pituitary gland volumes were measured using the MAGeT brain algorithm. Linear mixed models examined between-group differences with controls and among patient subgroups based on diagnosis, as well as how pituitary volumes were associated with symptom severity, cognitive function, antipsychotic dose, and illness duration. RESULTS: Mean pituitary gland volume did not significantly differ between patients and controls. No significant effect of diagnosis was observed. Larger pituitary gland volume was associated with greater symptom severity (F = 13.61, p = 0.0002), lower cognitive function (F = 4.76, p = 0.03), and higher antipsychotic dose (F = 5.20, p = 0.02). Illness duration was not significantly associated with pituitary gland volume. When all variables were considered, only symptom severity significantly predicted pituitary gland volume (F = 7.54, p = 0.006). CONCLUSIONS: Although pituitary volumes were not increased in psychotic disorders, larger size may be a marker associated with more severe symptoms in the progression of psychosis. This finding helps clarify previous inconsistent reports and highlights the need for further research into pituitary gland-related factors in individuals with psychosis.


Asunto(s)
Trastorno Bipolar , Imagen por Resonancia Magnética , Hipófisis , Trastornos Psicóticos , Esquizofrenia , Humanos , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Masculino , Femenino , Adulto , Hipófisis/patología , Hipófisis/diagnóstico por imagen , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Persona de Mediana Edad , Antipsicóticos/uso terapéutico , Antipsicóticos/farmacología , Tamaño de los Órganos , Estudios de Casos y Controles , Biomarcadores
6.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072056

RESUMEN

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
7.
Nat Commun ; 14(1): 6835, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884562

RESUMEN

Major depressive disorder (MDD) is one of the most important causes of disability worldwide. While recent work provides insights into the molecular alterations in the brain of patients with MDD, whether these molecular signatures can be associated with the expression of specific symptom domains remains unclear. Here, we identified sex-specific gene modules associated with the expression of MDD, combining differential gene expression and co-expression network analyses in six cortical and subcortical brain regions. Our results show varying levels of network homology between males and females across brain regions, although the associations between these structures and the expression of MDD remain highly sex specific. We refined these associations to several symptom domains and identified transcriptional signatures associated with distinct functional pathways, including GABAergic and glutamatergic neurotransmission, metabolic processes and intracellular signal transduction, across brain regions associated with distinct symptomatic profiles in a sex-specific fashion. In most cases, these associations were specific to males or to females with MDD, although a subset of gene modules associated with common symptomatic features in both sexes were also identified. Together, our findings suggest that the expression of distinct MDD symptom domains associates with sex-specific transcriptional structures across brain regions.


Asunto(s)
Trastorno Depresivo Mayor , Masculino , Humanos , Femenino , Depresión/genética , Encéfalo/metabolismo , Transmisión Sináptica , Transducción de Señal , Imagen por Resonancia Magnética
8.
Schizophr Res ; 260: 143-151, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657281

RESUMEN

Clinically defined psychosis diagnoses are neurobiologically heterogeneous. The B-SNIP consortium identified and validated more neurobiologically homogeneous psychosis Biotypes using an extensive battery of neurocognitive and psychophysiological laboratory measures. However, typically the first step in any diagnostic evaluation is the clinical interview. In this project, we evaluated if psychosis Biotypes have clinical characteristics that can support their differentiation in addition to obtaining laboratory testing. Clinical interview data from 1907 individuals with a psychosis Biotype were used to create a diagnostic algorithm. The features were 58 ratings from standard clinical scales. Extremely randomized tree algorithms were used to evaluate sensitivity, specificity, and overall classification success. Biotype classification accuracy peaked at 91 % with the use of 57 items on average. A reduced feature set of 28 items, though, also showed 81 % classification accuracy. Using this reduced item set, we found that only 10-11 items achieved a one-vs-all (Biotype-1 or not, Biotype-2 or not, Biotype-3 or not) area under the sensitivity-specificity curve of .78 to .81. The top clinical characteristics for differentiating psychosis Biotypes, in order of importance, were (i) difficulty in abstract thinking, (ii) multiple indicators of social functioning, (iii) conceptual disorganization, (iv) severity of hallucinations, (v) stereotyped thinking, (vi) suspiciousness, (vii) unusual thought content, (viii) lack of spontaneous speech, and (ix) severity of delusions. These features were remarkably different from those that differentiated DSM psychosis diagnoses. This low-burden adaptive algorithm achieved reasonable classification accuracy and will support Biotype-specific etiological and treatment investigations even in under-resourced clinical and research environments.


Asunto(s)
Trastornos Psicóticos , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Alucinaciones/diagnóstico , Alucinaciones/etiología , Pensamiento , Cognición
9.
Schizophr Res ; 261: 161-169, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776647

RESUMEN

Event-related potentials (ERPs) during oddball tasks and the behavioral performance on the Penn Conditional Exclusion Task (PCET) measure context-appropriate responding: P300 ERPs to oddball targets reflect detection of input changes and context updating in working memory, and PCET performance indexes detection, adherence, and maintenance of mental set changes. More specifically, PCET variables quantify cognitive functions including inductive reasoning (set 1 completion), mental flexibility (perseverative errors), and working memory maintenance (regressive errors). Past research showed that both P300 ERPs and PCET performance are disrupted in psychosis. This study probed the possible neural correlates of 3 PCET abnormalities that occur in participants with psychosis via the overlapping cognitive demands of the two study paradigms. In a two-tiered analysis, psychosis (n = 492) and healthy participants (n = 244) were first divided based on completion of set 1 - which measures subjects' ability to use inductive reasoning to arrive at the correct set. Results showed that participants who failed set 1 produced lower parietal P300, independent of clinical status. In the second tier of analysis, a double dissociation was found among healthy set 1 completers: frontal P300 amplitudes were negatively associated with perseverative errors, and parietal P300 was negatively associated with regressive errors. In contrast, psychosis participants showed global P300 reductions regardless of PCET performance. From this we conclude that in psychosis, overall activations evoked by the oddball task are reduced while the cognitive functions required by PCET are still somewhat supported, showing some level of independence or compensatory physiology in psychosis between neural activities underlying the two tasks.


Asunto(s)
Potenciales Relacionados con Evento P300 , Trastornos Psicóticos , Humanos , Potenciales Relacionados con Evento P300/fisiología , Electroencefalografía/métodos , Trastornos Psicóticos/psicología , Potenciales Evocados/fisiología , Cognición
11.
Sci Rep ; 13(1): 12980, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563219

RESUMEN

Traditional diagnostic formulations of psychotic disorders have low correspondence with underlying disease neurobiology. This has led to a growing interest in using brain-based biomarkers to capture biologically-informed psychosis constructs. Building upon our prior work on the B-SNIP Psychosis Biotypes, we aimed to examine whether structural MRI (an independent biomarker not used in the Biotype development) can effectively classify the Biotypes. Whole brain voxel-wise grey matter density (GMD) maps from T1-weighted images were used to train and test (using repeated randomized train/test splits) binary L2-penalized logistic regression models to discriminate psychosis cases (n = 557) from healthy controls (CON, n = 251). A total of six models were evaluated across two psychosis categorization schemes: (i) three Biotypes (B1, B2, B3) and (ii) three DSM diagnoses (schizophrenia (SZ), schizoaffective (SAD) and bipolar (BD) disorders). Above-chance classification accuracies were observed in all Biotype (B1 = 0.70, B2 = 0.65, and B3 = 0.56) and diagnosis (SZ = 0.64, SAD = 0.64, and BD = 0.59) models. However, the only model that showed evidence of specificity was B1, i.e., the model was able to discriminate B1 vs. CON and did not misclassify other psychosis cases (B2 or B3) as B1 at rates above nominal chance. The GMD-based classifier evidence for B1 showed a negative association with an estimate of premorbid general intellectual ability, regardless of group membership, i.e. psychosis or CON. Our findings indicate that, complimentary to clinical diagnoses, the B-SNIP Psychosis Biotypes may offer a promising approach to capture specific aspects of psychosis neurobiology.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/psicología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/psicología , Encéfalo/diagnóstico por imagen , Fenotipo , Imagen por Resonancia Magnética , Biomarcadores
12.
Brain Behav Immun ; 114: 3-15, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37506949

RESUMEN

INTRODUCTION: High-inflammation subgroups of patients with psychosis demonstrate cognitive deficits and neuroanatomical alterations. Systemic inflammation assessed using IL-6 and C-reactive protein may alter functional connectivity within and between resting-state networks, but the cognitive and clinical implications of these alterations remain unknown. We aim to determine the relationships of elevated peripheral inflammation subgroups with resting-state functional networks and cognition in psychosis spectrum disorders. METHODS: Serum and resting-state fMRI were collected from psychosis probands (schizophrenia, schizoaffective, psychotic bipolar disorder) and healthy controls (HC) from the B-SNIP1 (Chicago site) study who were stratified into inflammatory subgroups based on factor and cluster analyses of 13 cytokines (HC Low n = 32, Proband Low n = 65, Proband High n = 29). Nine resting-state networks derived from independent component analysis were used to assess functional and multilayer connectivity. Inter-network connectivity was measured using Fisher z-transformation of correlation coefficients. Network organization was assessed by investigating networks of positive and negative connections separately, as well as investigating multilayer networks using both positive and negative connections. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia. Linear regressions, Spearman correlations, permutations tests and multiple comparison corrections were used for analyses in R. RESULTS: Anterior default mode network (DMNa) connectivity was significantly reduced in the Proband High compared to Proband Low (Cohen's d = -0.74, p = 0.002) and HC Low (d = -0.85, p = 0.0008) groups. Inter-network connectivity between the DMNa and the right-frontoparietal networks was lower in Proband High compared to Proband Low (d = -0.66, p = 0.004) group. Compared to Proband Low, the Proband High group had lower negative (d = 0.54, p = 0.021) and positive network (d = 0.49, p = 0.042) clustering coefficient, and lower multiplex network participation coefficient (d = -0.57, p = 0.014). Network findings in high inflammation subgroups correlate with worse verbal fluency, verbal memory, symbol coding, and overall cognition. CONCLUSION: These results expand on our understanding of the potential effects of peripheral inflammatory signatures and/or subgroups on network dysfunction in psychosis and how they relate to worse cognitive performance. Additionally, the novel multiplex approach taken in this study demonstrated how inflammation may disrupt the brain's ability to maintain healthy co-activation patterns between the resting-state networks while inhibiting certain connections between them.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Red en Modo Predeterminado , Trastornos Psicóticos/psicología , Cognición , Imagen por Resonancia Magnética , Inflamación , Encéfalo , Mapeo Encefálico
13.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205394

RESUMEN

Hyperexcitability in the orbitofrontal cortex (OFC) is a key clinical feature of anhedonic domains of Major Depressive Disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unknown. Here, cell-population-specific chromatin accessibility profiling in human OFC unexpectedly mapped genetic risk for MDD exclusively to non-neuronal cells, and transcriptomic analyses revealed significant glial dysregulation in this region. Characterization of MDD-specific cis-regulatory elements identified ZBTB7A - a transcriptional regulator of astrocyte reactivity - as an important mediator of MDD-specific chromatin accessibility and gene expression. Genetic manipulations in mouse OFC demonstrated that astrocytic Zbtb7a is both necessary and sufficient to promote behavioral deficits, cell-type-specific transcriptional and chromatin profiles, and OFC neuronal hyperexcitability induced by chronic stress - a major risk factor for MDD. These data thus highlight a critical role for OFC astrocytes in stress vulnerability and pinpoint ZBTB7A as a key dysregulated factor in MDD that mediates maladaptive astrocytic functions driving OFC hyperexcitability.

14.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37205414

RESUMEN

Background: Major depressive disorder (MDD), along with related mood disorders, is a debilitating illness that affects millions of individuals worldwide. While chronic stress increases incidence levels of mood disorders, stress-mediated disruptions in brain function that precipitate these illnesses remain elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding precise roles for serotonin in the precipitation of mood disorders. Our group recently demonstrated that serotonin epigenetically modifies histone proteins (H3K4me3Q5ser) to regulate transcriptional permissiveness in brain. However, this phenomenon has not yet been explored following stress and/or AD exposures. Methods: We employed a combination of genome-wide and biochemical analyses in dorsal raphe nucleus (DRN) of male and female mice exposed to chronic social defeat stress to examine the impact of stress exposures on H3K4me3Q5ser dynamics, as well as associations between the mark and stress-induced gene expression. We additionally assessed stress-induced regulation of H3K4me3Q5ser following AD exposures, and employed viral-mediated gene therapy to reduce H3K4me3Q5ser levels in DRN and examine the impact on stress-associated gene expression and behavior. Results: We found that H3K4me3Q5ser plays important roles in stress-mediated transcriptional plasticity. Chronically stressed mice displayed dysregulated H3K4me3Q5ser dynamics in DRN, with both AD- and viral-mediated disruption of these dynamics proving sufficient to rescue stress-mediated gene expression and behavior. Conclusions: These findings establish a neurotransmission-independent role for serotonin in stress-/AD-associated transcriptional and behavioral plasticity in DRN.

15.
World Psychiatry ; 22(2): 270-271, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37159346
16.
bioRxiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37131585

RESUMEN

Major depressive disorder (MDD) is one of the most important causes of disability worldwide. While recent work provides insights into the molecular alterations in the brain of patients with MDD, whether these molecular signatures can be associated with the expression of specific symptom domains in males and females remains unclear. Here, we identified sex-specific gene modules associated with the expression of MDD, combining differential gene expression and co-expression network analyses in six cortical and subcortical brain regions. Our results show varying levels of network homology between males and females across brain regions, although the association between these structures and the expression of MDD remains highly sex-specific. We refined these associations to several symptom domains and identified transcriptional signatures associated with distinct functional pathways, including GABAergic and glutamatergic neurotransmission, metabolic processes, and intracellular signal transduction, across brain regions associated with distinct symptomatic profiles in a sex-specific fashion. In most cases, these associations were specific to males or to females with MDD, although a subset of gene modules associated with common symptomatic features in both sexes was also identified. Together, our findings suggest that the expression of distinct MDD symptom domains is associated with sex-specific transcriptional structures across brain regions.

17.
Mol Psychiatry ; 28(5): 2030-2038, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37095352

RESUMEN

Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.

18.
Schizophr Res ; 255: 69-78, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965362

RESUMEN

Elevated markers of peripheral inflammation are common in psychosis spectrum disorders and have been associated with brain anatomy, pathology, and physiology as well as clinical outcomes. Preliminary evidence suggests a link between inflammatory cytokines and C-reactive protein (CRP) with generalized cognitive impairments in a subgroup of individuals with psychosis. Whether these patients with elevated peripheral inflammation demonstrate deficits in specific cognitive domains remains unclear. To examine this, seventeen neuropsychological and sensorimotor tasks and thirteen peripheral inflammatory and microvascular markers were quantified in a subset of B-SNIP consortium participants (129 psychosis, 55 healthy controls). Principal component analysis was conducted across the inflammatory markers, resulting in five inflammation factors. Three discrete latent cognitive domains (Visual Sensorimotor, General Cognitive Ability, and Inhibitory Behavioral Control) were characterized based on the neurobehavioral battery and examined in association with inflammation factors. Hierarchical clustering analysis identified cognition-sensitive high/low inflammation subgroups. Among persons with psychotic disorders but not healthy controls, higher inflammation scores had significant associations with impairments of Inhibitory Control (R2 = 0.100, p-value = 2.69e-4, q-value = 0.004) and suggestive associations with Visual Sensorimotor function (R2 = 0.039, p-value = 0.024, q-value = 0.180), but not with General Cognitive Ability (R2 = 0.015, p-value = 0.162). Greater deficits in Inhibitory Control were observed in the high inflammation patient subgroup, which represented 30.2 % of persons with psychotic disorders, as compared to the low inflammation psychosis subgroup. These findings indicate that inflammation dysregulation may differentially impact specific neurobehavioral domains across psychotic disorders, particularly performance on tasks requiring ongoing behavioral monitoring and control.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Control de la Conducta , Inflamación/complicaciones , Pruebas Neuropsicológicas
19.
Front Hum Neurosci ; 16: 1001692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438633

RESUMEN

Background: Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles. Materials and methods: We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large (N ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP. Results: Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences. Conclusion: These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.

20.
Sci Adv ; 8(48): eabn9494, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36449610

RESUMEN

Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA