Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Dev Cogn Neurosci ; 69: 101449, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39303431

RESUMEN

Prior studies have reported associations between socioeconomic disadvantage, brain structure and mental health outcomes, but the timing of these relations is not well understood. Using prospective longitudinal data from the Avon Longitudinal Study of Parents and Children (ALSPAC), this preregistered study examined whether socioeconomic disadvantage related differentially to depressive symptoms (n=3012-3530) and cortical and subcortical structures (n=460-733) in emerging adults, depending on the timing of exposure to socioeconomic disadvantage. Family income in early childhood and own income measured concurrently were both significantly related to depressive symptoms in emerging adulthood. Similar results were observed for perceived financial strain. In contrast, only family income in early childhood was associated with brain structure in emerging adulthood, with positive associations with intracranial volume and total and regional cortical surface area. The findings suggest that both objective and subjective aspects of one's financial standing throughout development relate to depressive symptoms in adulthood, but that specifically early life family income is related to brain structural features in emerging adulthood. This suggests that associations between socioeconomic disadvantage and brain structure originate early in neurodevelopment, highlighting the role of timing of socioeconomic disadvantage.

2.
Transl Psychiatry ; 14(1): 317, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095355

RESUMEN

Several mental disorders emerge during childhood or adolescence and are often characterized by socioemotional difficulties, including alterations in emotion perception. Emotional facial expressions are processed in discrete functional brain modules whose connectivity patterns encode emotion categories, but the involvement of these neural circuits in psychopathology in youth is poorly understood. This study examined the associations between activation and functional connectivity patterns in emotion circuits and psychopathology during development. We used task-based fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC, N = 1221, 8-23 years) and conducted generalized psycho-physiological interaction (gPPI) analyses. Measures of psychopathology were derived from an independent component analysis of questionnaire data. The results showed positive associations between identifying fearful, sad, and angry faces and depressive symptoms, and a negative relationship between sadness recognition and positive psychosis symptoms. We found a positive main effect of depressive symptoms on BOLD activation in regions overlapping with the default mode network, while individuals reporting higher levels of norm-violating behavior exhibited emotion-specific lower functional connectivity within regions of the salience network and between modules that overlapped with the salience and default mode network. Our findings illustrate the relevance of functional connectivity patterns underlying emotion processing for behavioral problems in children and adolescents.


Asunto(s)
Emociones , Expresión Facial , Imagen por Resonancia Magnética , Humanos , Adolescente , Femenino , Masculino , Niño , Emociones/fisiología , Adulto Joven , Depresión/fisiopatología , Depresión/diagnóstico por imagen , Depresión/psicología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Reconocimiento Facial/fisiología , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Trastornos Mentales/fisiopatología , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/psicología
3.
Biol Psychiatry ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084501

RESUMEN

BACKGROUND: Different types of early-life adversity have been associated with children's brain structure and function. However, understanding the disparate influence of distinct adversity exposures on the developing brain remains a major challenge. METHODS: This study investigates the neural correlates of 10 robust dimensions of early-life adversity identified through exploratory factor analysis in a large community sample of youth from the Adolescent Brain Cognitive Development (ABCD) Study. Brain age models were trained, validated, and tested separately on T1-weighted (T1; N = 9524), diffusion tensor (DTI; N = 8834), and resting-state functional (rs-fMRI; N = 8233) magnetic resonance imaging (MRI) data from two time points (mean age = 10.7 years, SD = 1.2, range = 8.9-13.8 years). RESULTS: Bayesian multilevel modelling supported distinct associations between different types of early-life adversity exposures and younger- and older-looking brains. Dimensions generally related to emotional neglect, such as lack of primary and secondary caregiver support, and lack of caregiver supervision, were associated with lower brain age gaps (BAGs), i.e., younger-looking brains. In contrast, dimensions generally related to caregiver psychopathology, trauma exposure, family aggression, substance use and separation from biological parent, and socio-economic disadvantage and neighbourhood safety were associated with higher BAGs, i.e., older-looking brains. CONCLUSIONS: The findings suggest that dimensions of early-life adversity are differentially associated with distinct neurodevelopmental patterns, indicative of dimension-specific delayed and accelerated brain maturation.

4.
Horm Behav ; 164: 105596, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944998

RESUMEN

In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for age, in this preregistered study we investigated the associations between menopause-related factors (i.e., menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging (leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females from the UK Biobank (age range 39-82). We then determined how these proxies of aging were associated with each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL were not significantly associated with each other. The greatest variance in each proxy of biological aging was most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 genotype. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies incorporating heterogeneous samples are an essential step towards advancing female health.


Asunto(s)
Envejecimiento , Apolipoproteína E4 , Menopausia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad , Envejecimiento/genética , Envejecimiento/fisiología , Apolipoproteína E4/genética , Encéfalo/metabolismo , Estudios de Cohortes , Depresión/genética , Menopausia/genética , Menopausia/fisiología , Biobanco del Reino Unido , Reino Unido
5.
Dev Sci ; : e13537, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874007

RESUMEN

The brain undergoes extensive development during late childhood and early adolescence. Cortical thinning is a prominent feature of this development, and some researchers have suggested that differences in cortical thickness may be related to internalizing symptoms, which typically increase during the same period. However, research has yielded inconclusive results. We utilized a new method that estimates the combined effect of individual differences in vertex-wise cortical thickness on internalizing symptoms. This approach allows for many small effects to be distributed across the cortex and avoids the necessity of correcting for multiple tests. Using a sample of 8763 children aged 8.9 to 11.1 from the ABCD study, we decomposed the total variation in caregiver-reported internalizing symptoms into differences in cortical thickness, additive genetics, and shared family environmental factors and unique environmental factors. Our results indicated that individual differences in cortical thickness accounted for less than 0.5% of the variation in internalizing symptoms. In contrast, the analysis revealed a substantial effect of additive genetics and family environmental factors on the different components of internalizing symptoms, ranging from 06% to 48% and from 0% to 34%, respectively. Overall, while this study found a minimal association between cortical thickness and internalizing symptoms, additive genetics, and familial environmental factors appear to be of importance for describing differences in internalizing symptoms in late childhood. RESEARCH HIGHLIGHTS: We utilized a new method for modelling the total contribution of vertex-wise individual differences in cortical thickness to internalizing symptoms in late childhood. The total contribution of individual differences in cortical thickness accounted for <0.5% of the variance in internalizing symptoms. Additive genetics and shared family environmental variation accounted for 17% and 34% of the variance in internalizing symptoms, respectively. Our results suggest that cortical thickness is not an important indicator for internalizing symptoms in childhood, whereas genetic and environmental differences have a substantial impact.

6.
Psychoneuroendocrinology ; 164: 107021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492349

RESUMEN

Animal studies have shown that pregnancy is associated with neural adaptations that promote maternal care. The hypothalamus represents a central structure of the mammalian maternal brain and hormonal priming of specific hypothalamic nuclei plays a key role in the induction and expression of maternal behavior. In humans, we have previously demonstrated that becoming a mother involves changes in grey matter anatomy, primarily in association areas of the cerebral cortex. In the current study, we investigated whether pregnancy renders anatomical changes in the hypothalamus. Using an advanced delineation technique, five hypothalamic substructures were defined in longitudinal MRI scans of 107 women extracted from two prospective pre-conception cohort studies, including 50 women who were scanned before and after pregnancy and 57 nulliparous control women scanned at a similar time interval. We showed that becoming a mother is associated with volume reductions in the anterior-superior, superior tuberal and posterior hypothalamus. In addition, these structural changes related to hormonal levels during pregnancy and specific aspects of self-reported maternal behavior in late pregnancy, including maternal-fetal attachment and nesting behavior. These findings show that pregnancy leads to changes in hypothalamic anatomy and suggest that these contribute to the development of maternal behavior in humans, supporting the conservation of key aspects of maternal brain circuitry and their role in maternal behavior across species.


Asunto(s)
Encéfalo , Conducta Materna , Animales , Humanos , Embarazo , Femenino , Estudios Prospectivos , Madres , Hipotálamo Posterior , Mamíferos
7.
JCPP Adv ; 4(1): e12220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486948

RESUMEN

Background: A child's socioeconomic environment can shape central aspects of their life, including vulnerability to mental disorders. Negative environmental influences in youth may interfere with the extensive and dynamic brain development occurring at this time. Indeed, there are numerous yet diverging reports of associations between parental socioeconomic status (SES) and child cortical brain morphometry. Most of these studies have used single metric- or unimodal analyses of standard cortical morphometry that downplay the probable scenario where numerous biological pathways in sum account for SES-related cortical differences in youth. Methods: To comprehensively capture such variability, using data from 9758 children aged 8.9-11.1 years from the ABCD Study®, we employed linked independent component analysis (LICA) and fused vertex-wise cortical thickness, surface area, curvature and grey-/white-matter contrast (GWC). LICA revealed 70 uni- and multimodal components. We then assessed the linear relationships between parental education, parental income and each of the cortical components, controlling for age, sex, genetic ancestry, and family relatedness. We also assessed whether cortical structure moderated the negative relationships between parental SES and child general psychopathology. Results: Parental education and income were both associated with larger surface area and higher GWC globally, in addition to local increases in surface area and to a lesser extent bidirectional GWC and cortical thickness patterns. The negative relation between parental income and child psychopathology were attenuated in children with a multimodal pattern of larger frontal- and smaller occipital surface area, and lower medial occipital thickness and GWC. Conclusion: Structural brain MRI is sensitive to SES diversity in childhood, with GWC emerging as a particularly relevant marker together with surface area. In low-income families, having a more developed cortex across MRI metrics, appears beneficial for mental health.

8.
Mol Psychiatry ; 29(5): 1465-1477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332374

RESUMEN

Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/patología , Trastornos Psicóticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Neuroimagen/métodos , Adulto , Adulto Joven , Adolescente , Síntomas Prodrómicos
9.
Lancet Digit Health ; 6(3): e211-e221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395541

RESUMEN

The value of normative models in research and clinical practice relies on their robustness and a systematic comparison of different modelling algorithms and parameters; however, this has not been done to date. We aimed to identify the optimal approach for normative modelling of brain morphometric data through systematic empirical benchmarking, by quantifying the accuracy of different algorithms and identifying parameters that optimised model performance. We developed this framework with regional morphometric data from 37 407 healthy individuals (53% female and 47% male; aged 3-90 years) from 87 datasets from Europe, Australia, the USA, South Africa, and east Asia following a comparative evaluation of eight algorithms and multiple covariate combinations pertaining to image acquisition and quality, parcellation software versions, global neuroimaging measures, and longitudinal stability. The multivariate fractional polynomial regression (MFPR) emerged as the preferred algorithm, optimised with non-linear polynomials for age and linear effects of global measures as covariates. The MFPR models showed excellent accuracy across the lifespan and within distinct age-bins and longitudinal stability over a 2-year period. The performance of all MFPR models plateaued at sample sizes exceeding 3000 study participants. This model can inform about the biological and behavioural implications of deviations from typical age-related neuroanatomical changes and support future study designs. The model and scripts described here are freely available through CentileBrain.


Asunto(s)
Benchmarking , Longevidad , Humanos , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Modelos Estadísticos , Algoritmos
10.
Dev Cogn Neurosci ; 65: 101339, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184855

RESUMEN

Linking the developing brain with individual differences in clinical and demographic traits is challenging due to the substantial interindividual heterogeneity of brain anatomy and organization. Here we employ an integrative approach that parses individual differences in both cortical thickness and common genetic variants, and assess their effects on a wide set of childhood traits. The approach uses a linear mixed model framework to obtain the unique effects of each type of similarity, as well as their covariance. We employ this approach in a sample of 7760 unrelated children in the ABCD cohort baseline sample (mean age 9.9, 46.8% female). In general, associations between cortical thickness similarity and traits were limited to anthropometrics such as height, weight, and birth weight, as well as a marker of neighborhood socioeconomic conditions. Common genetic variants explained significant proportions of variance across nearly all included outcomes, although estimates were somewhat lower than previous reports. No significant covariance of the effects of genetic and cortical thickness similarity was found. The present findings highlight the connection between anthropometrics as well as neighborhood socioeconomic conditions and the developing brain, which appear to be independent from individual differences in common genetic variants in this population-based sample.


Asunto(s)
Encéfalo , Niño , Humanos , Femenino , Masculino , Fenotipo , Factores Socioeconómicos
11.
Child Dev ; 95(1): 313-323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37525404

RESUMEN

This study examined longitudinal development of prosocial behavior, assessed by the parent-reported Strength and Difficulty Questionnaire, and inhibitory control, measured by the Opposite Worlds Task, in a sample aged 9 and 12 years (n = 9468, 49.9% girls, 85.8% White) from the Avon Longitudinal Study of Parents and Children. The goal was to assess whether the level of prosocial behavior at age 9 relates to change in inhibitory control, and vice versa. Sex differences were also explored. Latent change score models showed that low inhibitory control in boys at age 9 was associated with more decreases in prosocial behavior from 9 to 12 years of age. This may suggest that interventions targeting inhibitory control in boys may also foster their social competence.


Asunto(s)
Altruismo , Conducta Social , Humanos , Niño , Masculino , Femenino , Caracteres Sexuales , Estudios Longitudinales , Padres
12.
Res Child Adolesc Psychopathol ; 52(5): 803-817, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38103132

RESUMEN

Cognitive functions and psychopathology develop in parallel in childhood and adolescence, but the temporal dynamics of their associations are poorly understood. The present study sought to elucidate the intertwined development of decision-making processes and attention problems using longitudinal data from late childhood (9-10 years) to mid-adolescence (11-13 years) from the Adolescent Brain Cognitive Development (ABCD) Study (n = 8918). We utilised hierarchical drift-diffusion modelling of behavioural data from the stop-signal task, parent-reported attention problems from the Child Behavior Checklist (CBCL), and multigroup univariate and bivariate latent change score models. The results showed faster drift rate was associated with lower levels of inattention at baseline, as well as a greater reduction of inattention over time. Moreover, baseline drift rate negatively predicted change in attention problems in females, and baseline attention problems negatively predicted change in drift rate. Neither response caution (decision threshold) nor encoding- and responding processes (non-decision time) were significantly associated with attention problems. There were no significant sex differences in the associations between decision-making processes and attention problems. The study supports previous findings of reduced evidence accumulation in attention problems and additionally shows that development of this aspect of decision-making plays a role in developmental changes in attention problems in youth.


Asunto(s)
Atención , Toma de Decisiones , Humanos , Femenino , Masculino , Niño , Adolescente , Estudios Longitudinales , Atención/fisiología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Desarrollo del Adolescente/fisiología
13.
Dev Cogn Neurosci ; 61: 101261, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37295068

RESUMEN

Research has demonstrated associations between pubertal development and brain maturation. However, existing studies have been limited by small samples, cross-sectional designs, and inconclusive findings regarding directionality of effects and sex differences. We examined the longitudinal temporal coupling of puberty status assessed using the Pubertal Development Scale (PDS) and magnetic resonance imaging (MRI)-based grey and white matter brain structure. Our sample consisted of 8896 children and adolescents at baseline (mean age = 9.9) and 6099 at follow-up (mean age = 11.9) from the Adolescent Brain and Cognitive Development (ABCD) Study cohort. Applying multigroup Bivariate Latent Change Score (BLCS) models, we found that baseline PDS predicted the rate of change in cortical thickness among females and rate of change in cortical surface area for both males and females. We also found a correlation between baseline PDS and surface area and co-occurring changes over time in males. Diffusion tensor imaging (DTI) analyses revealed correlated change between PDS and fractional anisotropy (FA) for both males and females, but no significant associations for mean diffusivity (MD). Our results suggest that pubertal status predicts cortical maturation, and that the strength of the associations differ between sex. Further research spanning the entire duration of puberty is needed to understand the extent and contribution of pubertal development on the youth brain.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Niño , Humanos , Masculino , Femenino , Adolescente , Imagen de Difusión Tensora/métodos , Estudios Transversales , Encéfalo , Pubertad , Sustancia Blanca/diagnóstico por imagen
14.
Dev Cogn Neurosci ; 62: 101271, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348146

RESUMEN

The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.


Asunto(s)
Trastorno del Espectro Autista , Mapeo Encefálico , Adolescente , Niño , Humanos , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Psicopatología , Preescolar , Adulto Joven
15.
Biol Psychiatry Glob Open Sci ; 3(2): 255-263, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124356

RESUMEN

Background: Adolescence hosts a sharp increase in the incidence of mental disorders. The prodromal phases are often characterized by cognitive deficits that predate disease onset by several years. Characterization of cognitive performance in relation to normative trajectories may have value for early risk assessment and monitoring. Methods: Youth aged 8 to 21 years (N = 6481) from the Philadelphia Neurodevelopmental Cohort were included. Performance scores from a computerized neurocognitive battery were decomposed using principal component analysis, yielding a general cognitive score. Items reflecting various aspects of psychopathology from self-report questionnaires and collateral caregiver information were decomposed using independent component analysis, providing individual domain scores. Using normative modeling and Bayesian statistics, we estimated normative trajectories of cognitive function and tested for associations between cognitive deviance and psychopathological domain scores. In addition, we tested for associations with polygenic scores for mental and behavioral disorders often involving cognition, including schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, and Alzheimer's disease. Results: More negative normative cognitive deviations were associated with higher general psychopathology burden and domains reflecting positive and prodromal psychosis, attention problems, norm-violating behavior, and anxiety. In addition, better performance was associated with higher joint burden of depression, suicidal ideation, and negative psychosis symptoms. The analyses revealed no evidence for associations with polygenic scores. Conclusions: Our results show that cognitive performance is associated with general and specific domains of psychopathology in youth. These findings support the close links between cognition and psychopathology in youth and highlight the potential of normative modeling for early risk assessment.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37003411

RESUMEN

BACKGROUND: Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the robustness of these associations are needed. METHODS: We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to test the associations between IIV and psychopathology (n = 8622, age = 8.9-11.1 years) and IIV and white matter microstructure (n = 7958, age = 8.9-11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts. RESULTS: Increased IIV in both short and long RTs was positively associated with the specific attention problems factor (Cohen's d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12). CONCLUSIONS: Using a large sample and a data-driven dimensional approach to psychopathology, the results provide novel evidence for a small but specific association between IIV and attention problems in children and support previous findings on the relevance of white matter microstructure for IIV.


Asunto(s)
Sustancia Blanca , Adolescente , Humanos , Niño , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Tiempo de Reacción/fisiología , Imagen de Difusión Tensora , Encéfalo/patología , Atención
18.
Cortex ; 162: 26-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965337

RESUMEN

Childhood mild traumatic brain injury (mTBI) is associated with elevated risk of developing social problems, which may be underpinned by changes in the structural developmental trajectory of the social brain, a network of cortical regions supporting social cognition and behavior. However, limited sample sizes and cross-sectional designs generally used in neuroimaging studies of pediatric TBI have prevented explorations of this hypothesis. This longitudinal retrospective study examined the development of parent-reported social problems and cortical thickness in social brain regions following childhood mTBI using data from the large population-based Adolescent Brain Cognitive Development (ABCD) Study. Two-group latent change score models revealed different developmental trajectories from ages 10-12 years in the level of social problems between children with (n = 345) and without (n = 7,089) mTBI. Children with mTBI showed higher, but non-clinical, levels of social problems than controls at age 10. Then, social problems decreased over 2 years, but still remained higher, but non-clinical, than in controls in which they stayed stable. Both groups showed similar decreases in social brain cortical thickness between ages 10 and 12 years. Further studies providing detailed information on the injury mechanism and acute symptoms are needed to better understand individual differences in social functioning and brain development in pediatric TBI.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Adolescente , Niño , Humanos , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/psicología , Estudios Retrospectivos , Estudios Transversales , Encéfalo/diagnóstico por imagen , Problemas Sociales , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen
19.
Dev Cogn Neurosci ; 60: 101219, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812678

RESUMEN

BACKGROUND: Abnormalities in brain structure are shared across diagnostic categories. Given the high rate of comorbidity, the interplay of relevant behavioural factors may also cross these classic boundaries. METHODS: We aimed to detect brain-based dimensions of behavioural factors using canonical correlation and independent component analysis in a clinical youth sample (n = 1732, 64 % male, age: 5-21 years). RESULTS: We identified two correlated patterns of brain structure and behavioural factors. The first mode reflected physical and cognitive maturation (r = 0.92, p = .005). The second mode reflected lower cognitive ability, poorer social skills, and psychological difficulties (r = 0.92, p = .006). Elevated scores on the second mode were a common feature across all diagnostic boundaries and linked to the number of comorbid diagnoses independently of age. Critically, this brain pattern predicted normative cognitive deviations in an independent population-based sample (n = 1253, 54 % female, age: 8-21 years), supporting the generalisability and external validity of the reported brain-behaviour relationships. CONCLUSIONS: These results reveal dimensions of brain-behaviour associations across diagnostic boundaries, highlighting potent disorder-general patterns as the most prominent. In addition to providing biologically informed patterns of relevant behavioural factors for mental illness, this contributes to a growing body of evidence in favour of transdiagnostic approaches to prevention and intervention.


Asunto(s)
Trastornos Mentales , Humanos , Masculino , Adolescente , Femenino , Preescolar , Niño , Adulto Joven , Adulto , Trastornos Mentales/diagnóstico , Trastornos Mentales/epidemiología , Trastornos Mentales/psicología , Encéfalo , Comorbilidad , Cognición , Comunicación
20.
Dev Cogn Neurosci ; 58: 101173, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332329

RESUMEN

Combining imaging modalities and metrics that are sensitive to various aspects of brain structure and maturation may help identify individuals that show deviations in relation to same-aged peers, and thus benefit early-risk-assessment for mental disorders. We used one timepoint multimodal brain imaging, cognitive, and questionnaire data from 1280 eight- to twenty-one-year-olds from the Philadelphia Neurodevelopmental Cohort. We estimated age-related gray and white matter properties and estimated individual deviation scores using normative modeling. Next, we tested for associations between the estimated deviation scores, and with psychopathology domain scores and cognition. More negative deviations in DTI-based fractional anisotropy (FA) and the first principal eigenvalue of the diffusion tensor (L1) were associated with higher scores on psychosis positive and prodromal symptoms and general psychopathology. A more negative deviation in cortical thickness (CT) was associated with a higher general psychopathology score. Negative deviations in global FA, surface area, L1 and CT were also associated with poorer cognitive performance. No robust associations were found between the deviation scores based on CT and DTI. The low correlations between the different multimodal magnetic resonance imaging-based deviation scores suggest that psychopathological burden in adolescence can be mapped onto partly distinct neurobiological features.


Asunto(s)
Trastornos Mentales , Sustancia Blanca , Adolescente , Humanos , Sustancia Gris/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anisotropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA