Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2991, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582753

RESUMEN

All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.

2.
ACS Appl Mater Interfaces ; 14(42): 47706-47715, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36239697

RESUMEN

All-solid-state batteries have recently gained considerable attention due to their potential improvements in safety, energy density, and cycle-life compared to conventional liquid electrolyte batteries. Sodium all-solid-state batteries also offer the potential to eliminate costly materials containing lithium, nickel, and cobalt, making them ideal for emerging grid energy storage applications. However, significant work is required to understand the persisting limitations and long-term cyclability of Na all-solid-state-based batteries. In this work, we demonstrate the importance of careful solid electrolyte selection for use against an alloy anode in Na all-solid-state batteries. Three emerging solid electrolyte material classes were chosen for this study: the chloride Na2.25Y0.25Zr0.75Cl6, sulfide Na3PS4, and borohydride Na2(B10H10)0.5(B12H12)0.5. Focused ion beam scanning electron microscopy (FIB-SEM) imaging, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were utilized to characterize the evolution of the anode-electrolyte interface upon electrochemical cycling. The obtained results revealed that the interface stability is determined by both the intrinsic electrochemical stability of the solid electrolyte and the passivating properties of the formed interfacial products. With appropriate material selection for stability at the respective anode and cathode interfaces, stable cycling performance can be achieved for Na all-solid-state batteries.

3.
Chem Commun (Camb) ; 57(82): 10787-10790, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34590100

RESUMEN

By using temperature-dependent neutron powder diffraction combined with maximum entropy method analysis, a previously unreported Li lattice site was discovered in the argyrodite Li6PS5Cl solid-state electrolyte. This new finding enables a more complete description of the Li diffusion model in argyrodites, providing structural guidance for designing novel high-conductivity solid-state electrolytes.

4.
Science ; 373(6562): 1494-1499, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554780

RESUMEN

The development of silicon anodes for lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, we enabled the stable operation of a 99.9 weight % microsilicon anode by using the interface passivating properties of sulfide solid electrolytes. Bulk and surface characterization, and quantification of interfacial components, showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. Microsilicon full cells were assembled and found to achieve high areal current density, wide operating temperature range, and high areal loadings for the different cells. The promising performance can be attributed to both the desirable interfacial property between microsilicon and sulfide electrolytes and the distinctive chemomechanical behavior of the lithium-silicon alloy.

5.
Angew Chem Int Ed Engl ; 60(20): 11359-11369, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33751750

RESUMEN

Commercialization of the lithium-sulfur battery is hampered by bottlenecks like low sulfur loading, high cathode porosity, uncontrollable Li2 Sx deposition and sluggish kinetics of Li2 S activation. Herein, we developed a densely stacked redox-active hexaazatrinaphthylene (HATN) polymer with a surface area of 302 m2 g-1 and a very high bulk density of ca. 1.60 g cm-3 . Uniquely, HATN polymer has a similar redox potential window to S, which facilitates the binding of Li2 Sx and its transformation chemistry within the bulky polymer host, leading to fast Li2 S/S kinetics. The compact polymer/S electrode presents a high sulfur loading of ca. 15 mgs cm-2 (200-µm thickness) with a low cathode porosity of 41 %. It delivers a high areal capacity of ca. 14 mAh cm-2 and good cycling stability (200 cycles) at electrolyte-sulfur (E/S) ratio of 5 µL mgs -1 . The assembled pouch cell delivers a cell-level high energy density of 303 Wh kg-1 and 392 Wh L-1 .

7.
Nat Nanotechnol ; 15(3): 170-180, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32157239

RESUMEN

The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to tremendous progress in the development of all-solid-state batteries (ASSBs). Though promising, they still face barriers that limit their practical application, such as poor interfacial stability, scalability challenges and production safety. Additionally, efforts to develop sustainable manufacturing of lithium ion batteries are still lacking, with no prevailing strategy developed yet to handle recyclability of ASSBs. To date, most SSE research has been largely focused on the discovery of novel electrolytes. Recent review articles have extensively examined a broad spectrum of these SSEs using evaluation factors such as conductivity and chemical stability. Recognizing this, in this Review we seek to evaluate SSEs beyond conventional factors and offer a perspective on various bulk, interface and nanoscale phenomena that require urgent attention within the scientific community. We provide a realistic assessment of the current state-of-the-art characterization techniques and evaluate future full cell ASSB prototyping strategies. We hope to offer rational solutions to overcome some major fundamental obstacles faced by the ASSB community, as well as potential strategies toward a sustainable ASSB recycling model.

8.
ACS Appl Mater Interfaces ; 11(46): 43138-43145, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31642661

RESUMEN

Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA