Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 14(1): 1519, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934098

RESUMEN

The presence of the van der Waals gap in layered materials creates a wealth of intriguing phenomena different to their counterparts in conventional materials. For example, pressurization can generate a large anisotropic lattice shrinkage along the stacking orientation and/or a significant interlayer sliding, and many of the exotic pressure-dependent properties derive from these mechanisms. Here we report a giant piezoresistivity in pressurized ß'-In2Se3. Upon compression, a six-orders-of-magnitude drop of electrical resistivity is obtained below 1.2 GPa in ß'-In2Se3 flakes, yielding a giant piezoresistive gauge πp of -5.33 GPa-1. Simultaneously, the sample undergoes a semiconductor-to-semimetal transition without a structural phase transition. Surprisingly, linear dichroism study and theoretical first principles modelling show that these phenomena arise not due to shrinkage or sliding at the van der Waals gap, but rather are dominated by the layer-dependent atomic motions inside the quintuple layer, mainly from the shifting of middle Se atoms to their high-symmetric location. The atomic motions link to both the band structure modulation and the in-plane ferroelectric dipoles. Our work not only provides a prominent piezoresistive material but also points out the importance of intralayer atomic motions beyond van der Waals gap.

2.
Proc Natl Acad Sci U S A ; 115(11): 2676-2680, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483248

RESUMEN

Formation of natural diamonds requires the reduction of carbon to its bare elemental form, and pressures (P) greater than 5 GPa to cross the graphite-diamond transition boundary. In a study of shocked ferromagnesian carbonate at the Xiuyan impact crater, we found that the impact pressure-temperature (P-T) of 25-45 GPa and 800-900 °C were sufficient to decompose ankerite Ca(Fe2+,Mg)(CO3)2 to form diamond in the absence of another reductant. The carbonate self-reduced to diamond by concurrent oxidation of Fe2+ to Fe3+ to form a high-P polymorph of magnesioferrite, MgFe3+2O4 Discovery of the subsolidus carbonate self-reduction mechanism indicates that diamonds could be ubiquitously present as a dominant host for carbon in the Earth's lower mantle.

3.
Phys Rev Lett ; 117(13): 135701, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715087

RESUMEN

The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO_{4}) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO_{4} develops a (001) compression texture associated with dominant slip along ⟨100⟩{001} starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.

4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 31(5): 547-52, 2014 Oct.
Artículo en Chino | MEDLINE | ID: mdl-25297577

RESUMEN

OBJECTIVE: To achieve early diagnosis for inheritable hearing loss and determine carrier rate of deafness causing gene mutations in order to provide information for premarital, prenatal and postnatal genetic counseling. METHODS: A total of 17 000 dried heel blood spots of normal newborns in Chengdu were collected with informed consent obtained from their parents. Genomic DNA was extracted from dried blood spots using Qiagen DNA extraction kits. Microarrays with 9 common mutation loci of 4 deafness-associated genes in Chinese population were used. Nine hot mutations including GJB2 (35delG, 176del16, 235delC and 299delAT), GJB3 (538C> T), SLC26A4 (IVS 7-2A> G, 2168A> G), and mitochondrial DNA 12S rRNA (1555A> G, 1494C> T) were detected by PCR amplification and microarray hybridization. Mutations detected by microarray were verified by Sanger DNA sequencing. RESULTS: Of the 17 000 new-borns, 542 neonates had mutations of the 4 genes. Heterozygous mutations of GJB2, at 235delC, 299delAT, and 176del16 were identified in 254, 55, and 15 newborns, respectively. Two newborns had homozygous mutation of GJB2, 235delC. Heterozygous mutations at 538C> T of GJB3, 2168A> G and IVS 7-2A> G of SLC26A4 were found in 23, 17 and 128 newborns, respectively. For mutation analysis of mitochondrial DNA 12S rRNA, 1494C> T and 1555A> G were homogeneous mutations in 4 and 42 neonates, respectively. In addition, 6 complexity mutations were detected, which demonstrated that one newborn had heterozygous mutations at GJB2 235delC and SLC26A4, IVS7-2A> G, one had heterozygous mutation GJB2 235delC and 12S rRNA homogeneous mutation, 1555 A> G, one heterozygous mutations at GJB2, 299delAT, and GJB3, 538C> T, one at GJB2, 299delAT and 12S rRNA, 1555 A> G, two at GJB2, 299delAT, and SLC26A4, IVS7-2A> G. All mutations as above were confirmed by DNA sequencing. CONCLUSION: The total mutation carrier rate of the 4 deafness genes is 3.19% in healthy newborns at Chengdu. Mutations of GJB2 and SLAC26A4 are major ones (86.5% of total). The mutation rate of mitochondrial DNA 12S rRNA is 2.71‰, which may have deafness induced by aminoglycoside antibiotics. Newborn screening for mutation of genes related to hereditary deafness plays an important role in the early detection and proper management for neonatal deafness as well as genetic counseling for premarital, prenatal and postnatal diagnosis.


Asunto(s)
Sordera/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Mutación , Tamizaje Neonatal/métodos , Pueblo Asiatico/genética , Secuencia de Bases , China , Conexina 26 , Conexinas/genética , Análisis Mutacional de ADN , ADN Mitocondrial/química , ADN Mitocondrial/genética , Sordera/diagnóstico , Sordera/etnología , Pruebas con Sangre Seca , Predisposición Genética a la Enfermedad/etnología , Humanos , Recién Nacido , Proteínas de Transporte de Membrana/genética , Análisis por Micromatrices/métodos , ARN Ribosómico/genética , Transportadores de Sulfato
5.
J Phys Condens Matter ; 24(43): 435403, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23041755

RESUMEN

High-pressure synchrotron x-ray powder diffraction experiments were performed on PbVO(3) tetragonal perovskite in a diamond anvil cell under hydrostatic pressures of up to 10.6 GPa at room temperature. The compression behavior of the PbVO(3) tetragonal phase is highly anisotropic, with the c-axis being the soft direction. A reversible tetragonal to cubic perovskite structural phase transition was observed between 2.7 and 6.4 GPa in compression and below 2.2 GPa in decompression. This transition was accompanied by a large volume collapse of 10.6% at 2.7 GPa, which was mainly due to electronic structural changes of the V(4+) ion. The polar pyramidal coordination of the V(4+) ion in the tetragonal phase changed to an isotropic octahedral coordination in the cubic phase. Fitting the observed P-V data using the Birch-Murnaghan equation of state with a fixed [Formula: see text] of 4 yielded a bulk modulus K(0) = 61(2) GPa and a volume V(0) = 67.4(1) Å(3) for the tetragonal phase, and the values of K(0) = 155(3) GPa and V(0) = 58.67(4) Å(3) for the cubic phase. The first-principles calculated results were in good agreement with our experiments.

6.
Proc Natl Acad Sci U S A ; 107(32): 14026-9, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20660782

RESUMEN

When cubic PbCrO(3) perovskite (Phase I) is squeezed up to approximately 1.6 GPa at room temperature, a previously undetected phase (Phase II) has been observed with a 9.8% volume collapse. Because the structure of Phase II can also be indexed into a cubic perovskite as Phase I, the transition between Phases I and II is a cubic to cubic isostructural transition. Such a transition appears independent of the raw materials and synthesizing methods used for the cubic PbCrO(3) perovskite sample. In contrast to the high-pressure isostructural electronic transition that appears in Ce and SmS, this transition seems not related with any change of electronic state, but it could be possibly related on the abnormally large volume and compressibility of the PbCrO(3) Phase I. The physical mechanism behind this transition and the structural and electronic/magnetic properties of the condensed phases are the interesting issues for future studies.

7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(7): 1340-3, 2007 Jul.
Artículo en Chino | MEDLINE | ID: mdl-17944409

RESUMEN

The pressure-induced phase transition of rutile-structured TiO2 was investigated by in-situ Raman spectrum method in a laser-heated diamond anvil cell (DAC). The experiment was conducted at 35 GPa under quasihydrostatic conditions using argon as medium. At room temperature, the rutile-type TiO2 begins to transform to baddeleyite-type phase at 13.4 GPa and completes at 21 GPa, and this new high-pressure structure retains up to 35 GPa, the upmost pressure used in this study. At the pressure of 29.4 GPa the sample of baddeleyite-type TiO2 was heated by an YAG laser to about 1 000-1500 degrees C, and then the baddeleyite phase transformed to a Pbca phase. The Pbca phase was heated again at 35.0 GPa and it was still stable. The sample then began to be decompressed, and the Pbca phase of TiO2 transformed to baddeleyite structure at 26.3 GPa, which stayed stable to 11.4 GPa. The formation of Pbca phase from baddeleyite phase needs the condition of high temperature, it transforms back to badde-leyite structure completely at pressure of a little below that on its formation, which suggests the boundary of the two phases can be determined at about 28 GPa. At 7. 6 GPa, and the Raman spectrum shows the characteristics of the mixture of two phases of baddeleyite-type and alpha-PbO2-type, which indicates that the baddeleyite phase transforms to alpha-PbO2 phase at about 7 GPa. The alpha-PbO2-type TiO2 is metastable under ambient condition.


Asunto(s)
Calor , Transición de Fase , Espectrometría Raman/métodos , Titanio/química , Láseres de Estado Sólido , Presión , Espectrometría Raman/instrumentación , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA