Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38809722

RESUMEN

Recent methods often introduce attention mechanisms into the skip connections of U-shaped networks to capture features. However, these methods usually overlook spatial information extraction in skip connections and exhibit inefficiency in capturing spatial and channel information. This issue prompts us to reevaluate the design of the skip-connection mechanism and propose a new deep-learning network called the Fusing Spatial and Channel Attention Network, abbreviated as FSCA-Net. FSCA-Net is a novel U-shaped network architecture that utilizes the Parallel Attention Transformer (PAT) to enhance the extraction of spatial and channel features in the skip-connection mechanism, further compensating for downsampling losses. We design the Cross-Attention Bridge Layer (CAB) to mitigate excessive feature and resolution loss when downsampling to the lowest level, ensuring meaningful information fusion during upsampling at the lowest level. Finally, we construct the Dual-Path Channel Attention (DPCA) module to guide channel and spatial information filtering for Transformer features, eliminating ambiguities with decoder features and better concatenating features with semantic inconsistencies between the Transformer and the U-Net decoder. FSCA-Net is designed explicitly for fine-grained segmentation tasks of multiple organs and regions. Our approach achieves over 48% reduction in FLOPs and over 32% reduction in parameters compared to the state-of-the-art method. Moreover, FSCA-Net outperforms existing segmentation methods on seven public datasets, demonstrating exceptional performance. The code has been made available on GitHub: https://github.com/Henry991115/FSCA-Net.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38512745

RESUMEN

Intracranial aneurysm (IA) is a vascular disease of the brain arteries caused by pathological vascular dilation, which can result in subarachnoid hemorrhage if ruptured. Automatically classification and segmentation of intracranial aneurysms are essential for their diagnosis and treatment. However, the majority of current research is focused on two-dimensional images, ignoring the 3D spatial information that is also critical. In this work, we propose a novel dual-branch fusion network called the Point Cloud and Multi-View Medical Neural Network (PMMNet) for IA classification and segmentation. Specifically, one branch based on 3D point clouds serves the purpose of extracting spatial features, whereas the other branch based on multi-view images acquires 2D pixel features. Ultimately, the two types of features are fused for IA classification and segmentation. To extract both local and global features from 3D point clouds, Multilayer Perceptron (MLP) and the attention mechanism are used in parallel. In addition, a SPSA module is proposed for multi-view image feature learning, which extracts more exquisite channel and spatial multi-scale features from 2D images. Experiments conducted on the IntrA dataset outperform other state-of-the-art methods, demonstrating that the proposed PMMNet exhibits strong superiority on the medical 3D dataset. We also obtain competitive results on public datasets, including ModelNet40, ModelNet10, and ShapeNetPart, which further validate the robustness and generality of the PMMNet.

3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426327

RESUMEN

Cluster assignment is vital to analyzing single-cell RNA sequencing (scRNA-seq) data to understand high-level biological processes. Deep learning-based clustering methods have recently been widely used in scRNA-seq data analysis. However, existing deep models often overlook the interconnections and interactions among network layers, leading to the loss of structural information within the network layers. Herein, we develop a new self-supervised clustering method based on an adaptive multi-scale autoencoder, called scAMAC. The self-supervised clustering network utilizes the Multi-Scale Attention mechanism to fuse the feature information from the encoder, hidden and decoder layers of the multi-scale autoencoder, which enables the exploration of cellular correlations within the same scale and captures deep features across different scales. The self-supervised clustering network calculates the membership matrix using the fused latent features and optimizes the clustering network based on the membership matrix. scAMAC employs an adaptive feedback mechanism to supervise the parameter updates of the multi-scale autoencoder, obtaining a more effective representation of cell features. scAMAC not only enables cell clustering but also performs data reconstruction through the decoding layer. Through extensive experiments, we demonstrate that scAMAC is superior to several advanced clustering and imputation methods in both data clustering and reconstruction. In addition, scAMAC is beneficial for downstream analysis, such as cell trajectory inference. Our scAMAC model codes are freely available at https://github.com/yancy2024/scAMAC.


Asunto(s)
Análisis de Datos , Análisis de Expresión Génica de una Sola Célula , Análisis por Conglomerados , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Algoritmos
4.
IEEE Trans Cybern ; 54(5): 2798-2810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37279140

RESUMEN

This study focuses on building an intelligent decision-making attention mechanism in which the channel relationship and conduct feature maps among specific deep Dense ConvNet blocks are connected to each other. Thus, develop a novel freezing network with a pyramid spatial channel attention mechanism (FPSC-Net) in deep modeling. This model studies how specific design choices in the large-scale data-driven optimization and creation process affect the balance between the accuracy and effectiveness of the designed deep intelligent model. To this end, this study presents a novel architecture unit, which is termed as the "Activate-and-Freeze" block on popular and highly competitive datasets. In order to extract informative features by fusing spatial and channel-wise information together within local receptive fields and boost the representation power, this study constructs a Dense-attention module (pyramid spatial channel (PSC) attention) to perform feature recalibration, and through the PSC attention to model the interdependence among convolution feature channels. We join the PSC attention module in the activating and back-freezing strategy to search for one of the most important parts of the network for extraction and optimization. Experiments on various large-scale datasets demonstrate that the proposed method can achieve substantially better performance for improving the ConvNets representation power than the other state-of-the-art deep models.

5.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37960438

RESUMEN

Medical image segmentation plays a crucial role in clinical diagnosis, treatment planning, and disease monitoring. The automatic segmentation method based on deep learning has developed rapidly, with segmentation results comparable to clinical experts for large objects, but the segmentation accuracy for small objects is still unsatisfactory. Current segmentation methods based on deep learning find it difficult to extract multiple scale features of medical images, leading to an insufficient detection capability for smaller objects. In this paper, we propose a context feature fusion and attention mechanism based network for small target segmentation in medical images called CFANet. CFANet is based on U-Net structure, including the encoder and the decoder, and incorporates two key modules, context feature fusion (CFF) and effective channel spatial attention (ECSA), in order to improve segmentation performance. The CFF module utilizes contextual information from different scales to enhance the representation of small targets. By fusing multi-scale features, the network captures local and global contextual cues, which are critical for accurate segmentation. The ECSA module further enhances the network's ability to capture long-range dependencies by incorporating attention mechanisms at the spatial and channel levels, which allows the network to focus on information-rich regions while suppressing irrelevant or noisy features. Extensive experiments are conducted on four challenging medical image datasets, namely ADAM, LUNA16, Thoracic OAR, and WORD. Experimental results show that CFANet outperforms state-of-the-art methods in terms of segmentation accuracy and robustness. The proposed method achieves excellent performance in segmenting small targets in medical images, demonstrating its potential in various clinical applications.


Asunto(s)
Señales (Psicología) , Procesamiento de Imagen Asistido por Computador
6.
Brief Funct Genomics ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37642213

RESUMEN

The precise identification of drug-protein inter action (DPI) can significantly speed up the drug discovery process. Bioassay methods are time-consuming and expensive to screen for each pair of drug proteins. Machine-learning-based methods cannot accurately predict a large number of DPIs. Compared with traditional computing methods, deep learning methods need less domain knowledge and have strong data learning ability. In this study, we construct a DPI prediction model based on dual channel neural networks with an efficient path attention mechanism, called DCA-DPI. The drug molecular graph and protein sequence are used as the data input of the model, and the residual graph neural network and the residual convolution network are used to learn the feature representation of the drug and protein, respectively, to obtain the feature vector of the drug and the hidden vector of protein. To get a more accurate protein feature vector, the weighted sum of the hidden vector of protein is applied using the neural attention mechanism. In the end, drug and protein vectors are concatenated and input into the full connection layer for classification. In order to evaluate the performance of DCA-DPI, three widely used public data, Human, C.elegans and DUD-E, are used in the experiment. The evaluation metrics values in the experiment are superior to other relevant methods. Experiments show that our model is efficient for DPI prediction.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37027776

RESUMEN

Cluster assignment of large and complex datasets is a crucial but challenging task in pattern recognition and computer vision. In this study, we explore the possibility of employing fuzzy clustering in a deep neural network framework. Thus, we present a novel evolutionary unsupervised learning representation model with iterative optimization. It implements the deep adaptive fuzzy clustering (DAFC) strategy that learns a convolutional neural network classifier from given only unlabeled data samples. DAFC consists of a deep feature quality-verifying model and a fuzzy clustering model, where deep feature representation learning loss function and embedded fuzzy clustering with the weighted adaptive entropy is implemented. We joint fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments and jointly optimize for the deep representation learning and clustering. Also, the joint model evaluates current clustering performance by inspecting whether the resampled data from estimated bottleneck space have consistent clustering properties to improve the deep clustering model progressively. Experiments on various datasets show that the proposed method obtains a substantially better performance for both reconstruction and clustering quality compared to the other state-of-the-art deep clustering methods, as demonstrated with the in-depth analysis in the extensive experiments.

8.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36715275

RESUMEN

A large number of works have presented the single-cell RNA sequencing (scRNA-seq) to study the diversity and biological functions of cells at the single-cell level. Clustering identifies unknown cell types, which is essential for downstream analysis of scRNA-seq samples. However, the high dimensionality, high noise and pervasive dropout rate of scRNA-seq samples have a significant challenge to the cluster analysis of scRNA-seq samples. Herein, we propose a new adaptive fuzzy clustering model based on the denoising autoencoder and self-attention mechanism called the scDASFK. It implements the comparative learning to integrate cell similar information into the clustering method and uses a deep denoising network module to denoise the data. scDASFK consists of a self-attention mechanism for further denoising where an adaptive clustering optimization function for iterative clustering is implemented. In order to make the denoised latent features better reflect the cell structure, we introduce a new adaptive feedback mechanism to supervise the denoising process through the clustering results. Experiments on 16 real scRNA-seq datasets show that scDASFK performs well in terms of clustering accuracy, scalability and stability. Overall, scDASFK is an effective clustering model with great potential for scRNA-seq samples analysis. Our scDASFK model codes are freely available at https://github.com/LRX2022/scDASFK.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Algoritmos
9.
Methods ; 204: 38-46, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35367367

RESUMEN

Promoter is a key DNA element located near the transcription start site, which regulates gene transcription by binding RNA polymerase. Thus, the identification of promoters is an important research field in synthetic biology. Nannochloropsis is an important unicellular industrial oleaginous microalgae, and at present, some studies have identified some promoters with specific functions by biological methods in Nannochloropsis, whereas few studies used computational methods. Here, we propose a method called DNPPro (DenseNet-Predict-Promoter) based on densely connected convolutional neural networks to predict the promoter of Nannochloropsis. First, we collected promoter sequences from six Nannochloropsis strains and removed 80% similarity using CD-HIT for each strain to yield a reliable set of positive datasets. Then, in order to construct a robust classifier, within-group scrambling method was used to generate negative dataset which overcomes the limitation of randomly selecting a non-promoter region from the same genome as a negative sample. Finally, we constructed a densely connected convolutional neural network, with the sequence one-hot encoding as the input. Compared with commonly used sequence processing methods, DNPPro can extract long sequence features to a greater extent. The cross-strain experiment on independent dataset verifies the generalization of our method. At the same time, T-SNE visualization analysis shows that our method can effectively distinguish promoters from non-promoters.


Asunto(s)
Redes Neurales de la Computación , Biología Sintética , Regiones Promotoras Genéticas
10.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35136924

RESUMEN

Rapid development of single-cell RNA sequencing (scRNA-seq) technology has allowed researchers to explore biological phenomena at the cellular scale. Clustering is a crucial and helpful step for researchers to study the heterogeneity of cell. Although many clustering methods have been proposed, massive dropout events and the curse of dimensionality in scRNA-seq data make it still difficult to analysis because they reduce the accuracy of clustering methods, leading to misidentification of cell types. In this work, we propose the scHFC, which is a hybrid fuzzy clustering method optimized by natural computation based on Fuzzy C Mean (FCM) and Gath-Geva (GG) algorithms. Specifically, principal component analysis algorithm is utilized to reduce the dimensions of scRNA-seq data after it is preprocessed. Then, FCM algorithm optimized by simulated annealing algorithm and genetic algorithm is applied to cluster the data to output a membership matrix, which represents the initial clustering result and is taken as the input for GG algorithm to get the final clustering results. We also develop a cluster number estimation method called multi-index comprehensive estimation, which can estimate the cluster numbers well by combining four clustering effectiveness indexes. The performance of the scHFC method is evaluated on 17 scRNA-seq datasets, and compared with six state-of-the-art methods. Experimental results validate the better performance of our scHFC method in terms of clustering accuracy and stability of algorithm. In short, scHFC is an effective method to cluster cells for scRNA-seq data, and it presents great potential for downstream analysis of scRNA-seq data. The source code is available at https://github.com/WJ319/scHFC.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA