Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Toxicology ; 505: 153844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801937

RESUMEN

Tributyltin chloride (TBTC) is a ubiquitous environmental pollutant with various adverse effects on human health. Exosomes are cell - derived signaling and substance transport vesicles. This investigation aimed to explore whether exosomes could impact the toxic effects caused by TBTC via their transport function. Cytotoxicity, DNA and chromosome damage caused by TBTC on MCF-7 cells were analyzed with CCK-8, flow cytometry, comet assay and micronucleus tests, respectively. Exosomal characterization and quantitative analysis were performed with ultracentrifugation, transmission electron microscope (TEM) and bicinchoninic acid (BCA) methods. TBTC content in exosomes was detected with Liquid Chromatography-Mass Spectrometry (LC-MS). The impacts of exosomal secretion on the toxic effects of TBTC were analyzed. Our data indicated that TBTC caused significant cytotoxicity, DNA and chromosome damage effects on MCF-7 cells, and a significantly increased exosomal secretion. Importantly, TBTC could be transported out of MCF-7 cells by exosomes. Further, when exosomal secretion was blocked with GW4869, the toxic effects of TBTC were significantly exacerbated. We concluded that TBTC promoted exosomal secretion, which in turn transported TBTC out of the source cells to alleviate its toxic effects. This investigation provided a novel insight into the role and mechanism of exosomal release under TBTC stress.


Asunto(s)
Daño del ADN , Exosomas , Compuestos de Trialquiltina , Humanos , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Compuestos de Trialquiltina/toxicidad , Células MCF-7 , Daño del ADN/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Supervivencia Celular/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 229: 113084, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915223

RESUMEN

The deficiency of effective biomarker for the toxic effects of water pollutants greatly limits the application of biological monitoring. This study aimed to investigate the possibility of circulating exosomes of indigenous fish acting as biomarker for the ecotoxicity effect of water environment. The Helong Reservoir in Guangzhou, China, was chosen as the investigating field, of which the water quality belongs to Class V (2013) (GB 3838-2002, China). The clean drinking water source of the upper reaches of the Liuxihe Reservoir was selected as the control. Indigenous fishes including Oreochromis niloticus (Nile tilapia), Labeo rohita (Rohu), Carassius auratus (Crucian carp) were sampled during the period from July 2020 to April 2021. Circulating exosomes of fish samples were isolated by using ultracentrifugation, characterized with transmission electron microscopy (TEM) and quantified by using bicinchoninic acid (BCA) assay. Oxidative stress, DNA and chromosome damage in liver, kidney, brain, gill and blood of fish samples were measured. The results showed that there were significant differences in superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents, DNA and chromosome damage in fish samples between the Helong Reservoir and the control. Interestingly, there were also significant differences in circulating exosome levels of fish samples between them. Our data suggested that circulating exosome level of indigenous fish may be a novel biomarker for the ecotoxicity effects of water environment.


Asunto(s)
Cíclidos , Exosomas , Contaminantes Químicos del Agua , Animales , Biomarcadores/metabolismo , Cíclidos/metabolismo , Carpa Dorada/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA