Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Respir J ; 18(5): e13774, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742362

RESUMEN

OBJECTIVE: This study aimed to explore the application value of human epididymis protein 4 (HE4) in diagnosing and monitoring the prognosis of lung cancer. METHODS: First, TCGA (The Cancer Genome Atlas) databases were used to analyze whey-acidic-protein 4-disulfide bond core domain 2 (WFDC2) gene expression levels in lung cancer tissues. Then, a total of 160 individuals were enrolled, categorized into three groups: the lung cancer group (n = 80), the benign lesions group (n = 40), and the healthy controls group (n = 40). Serum HE4 levels and other biomarkers were quantified using an electro-chemiluminescent immunoassay. Additionally, the expression of HE4 in tissues was analyzed through immunohistochemistry (IHC). In vitro cultures of human airway epithelial (human bronchial epithelial [HBE]) cells and various lung cancer cell lines (SPC/PC9/A594/H520) were utilized to detect HE4 levels via western blot (WB). RESULTS: Analysis of the TCGA and UALCAN (The University of Alabama at Birmingham Cancer Data Analysis Portal) databases showed that WFDC2 gene expression levels were upregulated in lung cancer tissues (p < 0.01). Compared with the control group and the benign group, HE4 was significantly higher in the serum of patients with lung cancer (p < 0.001). Receiver operating characteristic (ROC) analysis confirmed that HE4 had better diagnostic efficacy than classical markers in the differential diagnosis of lung cancer and benign lesions and had the highest diagnostic value in lung adenocarcinoma (area under the ROC curve [AUC] = 0.826). HE4 increased in early lung cancer and positively correlated with poor prognosis (p < 0.001). Moreover, the results of WB and IHC revealed that the expression of HE4 was increased in lung cancer cells (SPC/A549/H520) and lung cancer tissues but decreased in PC9 cells with a lack of exon EGFR19 (p < 0.05). CONCLUSION: Serum HE4 emerges as a promising novel biomarker for the diagnosis and prognosis assessment of lung cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pronóstico , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/análisis
2.
Neoplasia ; 44: 100935, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37717471

RESUMEN

Voltage-dependent anion-selective channel protein 1 (VDAC1) is the most abundant protein in the mitochondrial outer membrane and plays a crucial role in the control of hepatocellular carcinoma (HCC) progress. Our previous research found that cytosolic molecular chaperone heat shock protein 90 (Hsp90) interacted with VDAC1, but the effect of the C-terminal and N-terminal domains of Hsp90 on the formation of VDAC1 oligomers is unclear. In this study, we focused on the effect of the C-terminal domain of Hsp90 on VDAC1 oligomerization, ubiquitination, and VDAC1 channel activity. We found that Hsp90 C-terminal domain inhibitor Novobiocin promoted VDAC1 oligomerization, release of cytochrome c, and activated mitochondrial apoptosis pathway. Atomic coarse particle modeling simulation revealed C-terminal domain of Hsp90α stabilized VDAC1 monomers. The purified VDAC1 was reconstituted into a planar lipid bilayer, and electrophysiology experiments of patch clamp showed that the Hsp90 C-terminal inhibitor Novobiocin increased VDAC1 channel conductance via promoting VDAC1 oligomerization. The mitochondrial ubiquitination proteomics results showed that VDAC1 K274 mono-ubiquitination was significantly decreased upon Novobiocin treatment. Site-directed mutation of VDAC1 (K274R) weakened Hsp90α-VDAC1 interaction and increased VDAC1 oligomerization. Taken together, our results reveal that Hsp90 C-terminal domain inhibition promotes VDAC1 oligomerization and VDAC1 channel conductance by decreasing VDAC1 K274 mono- ubiquitination, which provides a new perspective for mitochondria-targeted therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Apoptosis , Novobiocina/farmacología , Neoplasias Hepáticas/genética , Ubiquitinación , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
3.
Transl Oncol ; 26: 101502, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36137350

RESUMEN

Heat shock protein 90 (Hsp90) has been an important therapeutic target for cancer therapy for decades. Unexpectedly, the monotherapy of N-terminal Hsp90 inhibitor STA9090 related clinical trials halted in phase III, and metastases were reported in animal models with the treatment of N-terminal Hsp90 inhibitors. Vacuolar protein sorting-associated protein 35 (VPS35) plays a vital role in endosome-derived EV (extracellular vesicle) traffic in neurodegeneration diseases, but no vps35 related EV were reported in tumors till now. Since tumor derived EVs contributes to metastasis and VPS35 is recently found to be involved in the invasion and metastasis of hepatocellular carcinoma (HCC), whether N-terminal Hsp90 inhibitor STA9090 induced EVs generation and the role of VPS35 in it were explored in this study. We found that N-terminal Hsp90 inhibitor STA9090 upregulated Bclaf1 and VPS35 levels, increased the secretion of EVs, and STA9090-induced-EVs promoted the invasion of HepG2 cells. As the clinical data suggested that the increased Bclaf1 and VPS35 levels correlated with increased metastasis and poorer prognosis in HCC, we focused on the Bclaf1-VPS35-EVs axis to further explore the mechanism of VPS35-related metastasis. The results demonstrated that Bclaf1 facilitated the transcription of VPS35 via bZIP domain, and knockdown of Bclaf1 or VPS35 alleviated pro-metastatic capability of STA9090-induced-EVs. All the results revealed the role of Bclaf1-VPS35-EVs axis on metastasis of HCC, and VPS35 knockdown decreased Hsp90 Inhibitor STA9090 induced extracellular vesicle release and metastasis, which provided a new combination therapeutic strategy to inhibit the metastasis of HCC caused by N-terminal Hsp90 inhibitor induced extracellular vesicles.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35091448

RESUMEN

INTRODUCTION: Atherosclerosis is the main pathological change in diabetic angiopathy, and vascular inflammation plays an important role in early atherosclerosis. Extracellular heat shock protein 90 (eHsp90) is secreted into the serum and is involved in various physiological and pathophysiological processes. However, the specific mechanism of eHsp90 in early atherosclerosis remains unclear. This study explored the relationship between Hsp90 and diabetic lower extremity arterial disease and investigated the expression of eHsp90 in vascular endothelial cells under environmental stimulation and the function and mechanism of eHsp90α involved in diabetic atherosclerosis. RESEARCH DESIGN AND METHODS: One hundred and three selected patients were divided into three groups: the diabetes mellitus group (n=27), the diabetic lower extremity arterial disease group (n=46), and the diabetic critical limb ischemia group (n=30). The relationships among serum Hsp90, oxidative stress indexes, and patient outcomes and the correlations among the indexes were analyzed. H&E staining and immunohistochemistry were used to observe the vasculature of amputated feet from patients with diabetic foot. An oxidative stress endothelial injury model was established under high glucose in vitro to explore the role of eHsp90 release in atherosclerosis progression. RESULTS: The level of serum Hsp90 was upregulated with aggravation of diabetic vascular disease. Hsp90α was correlated with malondialdehyde to some extent and was an independent risk factor in the progression of diabetic vascular disease, with predictive ability. The expression area of Hsp90α was consistent with the area of inflammatory infiltration in the vessel lumen. Vascular endothelial cells were found to increase eHsp90α secretion under stress. Then inhibition of eHsp90α can reduce the degree of cellular inflammation and damage. Endothelial cell-conditioned medium and recombinant human Hsp90α increased monocyte migration via the low-denisity lipoprotein receptor-related protein 1 (LRP1) receptor to promote disease progression. CONCLUSIONS: eHsp90α plays a critical role in the early inflammatory injury stage of atherosclerosis. TRIAL REGISTRATION NUMBER: NCT04787770.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/complicaciones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Inflamación/patología
5.
Mol Cancer Ther ; 20(10): 1880-1892, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376581

RESUMEN

As a conserved molecular chaperone, heat shock protein 90 (Hsp90) maintains the stability and homeostasis of oncoproteins and helps cancer cells survive. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a pivotal role in the non-homologous end joining pathway for DNA double-strand breaks (DSB) repair. Tumor cells contain higher levels of DNA-PKcs to survive by the hostile tumor microenvironment and various antitumor therapies. Here, we showed that increased levels of Hsp90α, Hsp90ß, and DNA-PKcs correlated with a poor overall survival in hepatocellular carcinoma (HCC). We revealed that Hsp90 N-terminal domain and C-terminal domain have different effects on DNA-PKcs protein and mRNA levels. The stability of DNA-PKcs depended on Hsp90α N-terminal nucleotide binding domain. Transcription factor SP1 regulates the transcription of PRKDC (gene name of DNA-PKcs) and is a client protein of Hsp90. Inhibition of Hsp90 N-terminal by STA9090 decreased the location of Hsp90α in nucleus, Hsp90α-SP1 interaction, SP1 level, and the binding of Hsp90α/SP1 at the proximal promoter region of PRKDC Because hyperthermia induces DSBs with increases level of DNA-PKcs, combined STA9090 treatment with hyperthermia effectively delayed the tumor growth and significantly decreased DNA-PKcs levels in xenografts model. Consistently, inhibition of Hsp90 increased the number of heat shock-induced γ-H2AX foci and delayed the repair of DSBs. Altogether, our results suggest that Hsp90 inhibitor STA9090 decreases DNA-PKcs protein stability and PRKDC mRNA level, which provide a theoretical basis for the promising combination therapy of hyperthermia and Hsp90 inhibitor in HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Daño del ADN , Proteína Quinasa Activada por ADN/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Hipertermia Inducida/efectos adversos , ARN Mensajero/genética , Animales , Apoptosis , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proliferación Celular , Reparación del ADN , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Estabilidad Proteica , Tasa de Supervivencia , Triazoles , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Oncogene ; 38(11): 1845-1859, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30367150

RESUMEN

The development of hepatocellular carcinomas (HCC) depends on their local microenvironment and the induction of neovascularization is a decisive step in tumor progression, since the growth of solid tumors is limited by nutrient and oxygen supply. Hypoxia is the critical factor that induces transcription of the hypoxia inducible factor-1α (HIF-1α) encoding gene HIF1A and HIF-1α protein accumulation to promote angiogenesis. However, the basis for the transcriptional regulation of HIF1A expression in HCC is still unclear. Here, we show that Bclaf1 levels are highly correlated with HIF-1α levels in HCC tissues, and that knockdown of Bclaf1 in HCC cell lines significantly reduces hypoxia-induced HIF1A expression. Furthermore, we found that Bclaf1 promotes HIF1A transcription via its bZIP domain, leading subsequently to increased transcription of the HIF-1α downstream targets VEGFA, TGFB, and EPO that in turn promote HCC-associated angiogenesis and thus survival and thriving of HCC cells. Moreover, we demonstrate that HIF-1α levels and microvessel density decrease after the shRNA-mediated Bclaf1 knockdown in xenograft tumors. Finally, we found that Bclaf1 levels increase in hypoxia in a HIF-1α dependent manner. Therefore, our study identifies Bclaf1 as a novel positive regulator of HIF-1α in the hypoxic microenvironment, providing new incentives for promoting Bcalf1 as a potential therapeutic target for an anti-HCC strategy.


Asunto(s)
Carcinoma Hepatocelular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Hepáticas/genética , Neovascularización Patológica/genética , Proteínas Represoras/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/patología , Hipoxia de la Célula/genética , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/patología , Transcripción Genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA