Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979330

RESUMEN

Variants in the poorly characterised oncoprotein, MORC2, a chromatin remodelling ATPase, lead to defects in epigenetic regulation and DNA damage response. The C-terminal domain (CTD) of MORC2, frequently phosphorylated in DNA damage, promotes cancer progression, but its role in chromatin remodelling remains unclear. Here, we report a molecular characterisation of full-length, phosphorylated MORC2, demonstrating its preference for binding open chromatin and functioning as a DNA sliding clamp. We identified a phosphate interacting motif within the CTD that dictates ATP hydrolysis rate and cooperative DNA binding. The DNA binding impacts several structural domains within the ATPase region. We provide the first visual proof that MORC2 induces chromatin remodelling through ATP hydrolysis-dependent DNA compaction, regulated by its phosphorylation state. These findings highlight phosphorylation of MORC2 CTD as a key modulator of chromatin remodelling, presenting it as a potential therapeutic target.

2.
Cell Rep ; 41(10): 111749, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476850

RESUMEN

Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.


Asunto(s)
Estructuras R-Loop , ARN , Humanos , ADN Helicasas/genética
3.
Mol Cell Biol ; 41(8): e0023421, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34096775

RESUMEN

Fanconi anemia (FA) is a rare genetic disease characterized by increased risk for bone marrow failure and cancer. The FA proteins function together to repair damaged DNA. A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs upon exposure to DNA-damaging agents and during the S phase of the cell cycle. The regulatory mechanisms governing S-phase monoubiquitination, in particular, are poorly understood. In this study, we have identified a cyclin-dependent kinase (CDK) regulatory phosphosite (S592) proximal to the site of FANCD2 monoubiquitination. FANCD2 S592 phosphorylation was detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and by immunoblotting with an S592 phospho-specific antibody. Mutation of S592 leads to abrogated monoubiquitination of FANCD2 during the S phase. Furthermore, FA-D2 (FANCD2-/-) patient cells expressing S592 mutants display reduced proliferation under conditions of replication stress and increased mitotic aberrations, including micronuclei and multinucleated cells. Our findings describe a novel cell cycle-specific regulatory mechanism for the FANCD2 protein that promotes mitotic fidelity.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Fosforilación/fisiología , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Humanos , Espectrometría de Masas en Tándem/métodos , Ubiquitinación/fisiología
4.
Prog Biophys Mol Biol ; 163: 5-13, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33058944

RESUMEN

The Fanconi Anemia (FA) pathway maintains genome stability by preventing DNA damage from occurring when replication is blocked. Central to the FA pathway is the monoubiquitination of FANCI-FANCD2 mediated by a ubiquitin RING-E3 ligase complex called the FA core complex. Genetic mutation in any component of the FA core complex results in defective FANCI-FANCD2 monoubiquitination and phenotypes of DNA damage sensitivity, birth defects, early-onset bone marrow failure and cancer. Here, we discuss the mechanisms of the FA core complex and FANCI-FANCD2 monoubiquitination at sites of blocked replication and review our current understanding of the biological functions of these proteins in replication fork protection.


Asunto(s)
Anemia de Fanconi , Daño del ADN , Reparación del ADN , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Ubiquitinación
5.
Mol Cell ; 80(6): 935-937, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33338408

RESUMEN

Two new studies in this issue of Molecular Cell demonstrate that bone marrow failure, in mice and humans, can be induced by formaldehyde generated either from defective metabolism (Dingler et al., 2020) or during the process of transcriptional reprogramming (Shen et al., 2020).


Asunto(s)
Aldehídos , Trastornos de Fallo de la Médula Ósea , Animales , Formaldehído/toxicidad , Humanos , Ratones
6.
Healthcare (Basel) ; 8(4)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158275

RESUMEN

Obesity is costly, yet there have been few attempts to estimate the actual costs of providing hospital care to the obese inpatient. This study aimed to test the feasibility of measuring obesity-related health care costs and accuracy of coding data for acute inpatients. A prospective observational study was conducted over three weeks in June 2018 in a single orthopaedic ward of a metropolitan tertiary hospital in Queensland, Australia. Demographic data, anthropometric measurements, clinical characteristics, cost of hospital encounter and coding data were collected. Complete demographic, anthropometric and clinical data were collected for all 18 participants. Hospital costing reports and coding data were not available within the study timeframe. Participant recruitment and data collection were resource-intensive, with mobility assistance required to obtain anthropometric measurements in more than half of the participants. Greater staff time and costs were seen in participants with obesity compared to those without obesity (obesity: body mass index ≥ 30), though large standard deviations indicate wide variance. Data collected suggest that obesity-related cost and resource use amongst acute inpatients require further exploration. This study provides recommendations for protocol refinement to improve the accuracy of data collected for future studies measuring the actual cost of providing hospital care to obese inpatients.

7.
Essays Biochem ; 64(5): 807-817, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32725171

RESUMEN

The Fanconi anemia (FA) pathway coordinates a faithful repair mechanism for DNA damage that blocks DNA replication, such as interstrand cross-links. A key step in the FA pathway is the conjugation of ubiquitin on to FANCD2 and FANCI, which is facilitated by a large E3 ubiquitin ligase complex called the FA core complex. Mutations in FANCD2, FANCI or FA core complex components cause the FA bone marrow failure syndrome. Despite the importance of these proteins to DNA repair and human disease, our molecular understanding of the FA pathway has been limited due to a deficit in structural studies. With the recent development in cryo-electron microscopy (EM), significant advances have been made in structural characterization of these proteins in the last 6 months. These structures, combined with new biochemical studies, now provide a more detailed understanding of how FANCD2 and FANCI are monoubiquitinated and how DNA repair may occur. In this review, we summarize these recent advances in the structural and molecular understanding of these key components in the FA pathway, compare the activation steps of FANCD2 and FANCI monoubiquitination and suggest molecular steps that are likely to be involved in regulating its activity.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Dimerización , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Mutación , Conformación Proteica , Ubiquitinación
8.
Sci Rep ; 10(1): 7959, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409752

RESUMEN

DNA inter-strand crosslinks (ICLs) threaten genomic stability by creating a physical barrier to DNA replication and transcription. ICLs can be caused by endogenous reactive metabolites or from chemotherapeutics. ICL repair in humans depends heavily on the Fanconi Anaemia (FA) pathway. A key signalling step of the FA pathway is the mono-ubiquitination of Fanconi Anaemia Complementation Group D2 (FANCD2), which is achieved by the multi-subunit E3 ligase complex. FANCD2 mono-ubiquitination leads to the recruitment of DNA repair proteins to the site of the ICL. The loss of FANCD2 mono-ubiquitination is a common clinical feature of FA patient cells. Therefore, molecules that restore FANCD2 mono-ubiquitination could lead to a potential drug for the management of FA. On the other hand, in some cancers, FANCD2 mono-ubiquitination has been shown to be essential for cell survival. Therefore, inhibition of FANCD2 mono-ubiquitination represents a possible therapeutic strategy for cancer specific killing. We transferred an 11-protein FANCD2 mono-ubiquitination assay to a high-throughput format. We screened 9,067 compounds for both activation and inhibition of the E3 ligase complex. The use of orthogonal assays revealed that candidate compounds acted via non-specific mechanisms. However, our high-throughput biochemical assays demonstrate the feasibility of using sophisticated and robust biochemistry to screen for small molecules that modulate a key step in the FA pathway. The future identification of FA pathway modulators is anticipated to guide future medicinal chemistry projects with drug leads for human disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Ubiquitinación/efectos de los fármacos
9.
Front Cell Dev Biol ; 8: 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117957

RESUMEN

DNA interstrand crosslinks (ICLs) are a physical barrier to replication and therefore toxic to cell viability. An important mechanism for the removal of ICLs is the Fanconi Anemia DNA repair pathway, which is initiated by mono-ubiquitination of FANCD2 and its partner protein FANCI. Here, we show that maintenance of FANCD2 and FANCI proteins in a monoubiquitinated form is regulated by the ATR-kinase. Using recombinant proteins in biochemical reconstitution experiments we show that ATR directly phosphorylates FANCI on serine 556, 559, and 565 to stabilize its association with DNA and FANCD2. This increased association with DNA stimulates the conjugation of ubiquitin to both FANCI and FANCD2, but also inhibits ubiquitin deconjugation. Using phosphomimetic and phosphodead mutants of FANCI we show that S559 and S565 are particularly important for protecting the complex from the activity of the deubiquitinating enzyme USP1:UAF1. Our results reveal a major mechanism by which ATR kinase maintains the activation of the FA pathway, by promoting the accumulation of FANCD2 in the ubiquitinated form active in DNA repair.

10.
Elife ; 92020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32167469

RESUMEN

FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here, we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show using electron microscopy that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.


Bone marrow is the spongy tissue inside bones that produces blood cells. Fanconi anemia is the most common form of inherited bone marrow death and affects children and young adults. In this disease, bone marrow cells cannot attach a protein tag called ubiquitin to another protein called FANCD2. When DNA becomes damaged, FANCD2 helps cells to respond and repair the damage but without ubiquitin it cannot do this correctly. Without ubiquitin linked to FANCD2 bone marrow cells die from damaged DNA. Another protein, called FANCI, works in partnership with FANCD2 and also gets linked to ubiquitin. Tan et al. studied purified proteins in the laboratory to understand how linking ubiquitin changes the behavior of FANCD2 and FANCI. When the proteins have ubiquitin attached, they can form stable attachments to DNA. Without ubiquitin, however, the proteins only attach to DNA for short periods of time. Using electron microscopy, Tan et al. discovered that large numbers of the modified proteins become tightly attached to damaged DNA, helping to protect it and triggering DNA repair processes. Understanding the role of FANCD2 in Fanconi anemia could lead to new treatments. FANCD2 and FANCI have similar roles in other cells too. Stopping them from protecting damaged DNA in cancer cells could be used to enhance the success of chemotherapies and radiotherapies.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Ubiquitinación
11.
Blood ; 135(18): 1588-1602, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32106311

RESUMEN

Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Alelos , Empalme Alternativo , Línea Celular Tumoral , Fibroblastos/metabolismo , Sitios Genéticos , Humanos , Modelos Biológicos , Mutación , Fenotipo , Estabilidad del ARN , Índice de Severidad de la Enfermedad , Ubiquitinación
12.
PLoS One ; 15(2): e0229000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092106

RESUMEN

Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their critical functions in the DNA damage response. Biochemical and structural characterization of these functions are limited by an absence of tools for the purification of DNA repair proteins in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto various substrates. Biotin affinity purification of modified proteins, followed by cleavage of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method provides a simple approach to study the role of mono-ubiquitination in DNA repair or any other mono-ubiquitination signaling pathways.


Asunto(s)
Avidina/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Antígeno Nuclear de Célula en Proliferación , Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/aislamiento & purificación , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/aislamiento & purificación , Humanos , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/aislamiento & purificación , Células Sf9 , Spodoptera , Ubiquitina/química , Ubiquitina/aislamiento & purificación , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/aislamiento & purificación
13.
Exp Hematol ; 50: 27-32, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28315701

RESUMEN

Fanconi anemia (FA) is an inherited blood disorder that causes bone marrow failure and high predisposition to cancers. The FA pathway guards the cell's genome stability by orchestrating the repair of interstrand cross-linking during the S phase of the cell cycle, preventing the chromosomal instability that is a key event in bone marrow failure syndrome. Central to the FA pathway is loss of monoubiquitinated forms of the Fanconi proteins FANCI and FANCD2, a process that is normally mediated by a "core complex" of seven other Fanconi proteins. Each protein, when mutated, can cause FA. The FA core-complex-catalyzed reaction is critical for signaling DNA cross-link damage such as that induced by chemotherapies. Here, we present a perspective on the current understanding of FANCI and FANCD2 monoubiquitination-mediated DNA repair. Our recent biochemical reconstitution of the monoubiquitination (and deubiquitination) reactions creates a paradigm for understanding FA. Further biochemical analysis will create new opportunities to address the leukemic phenotype of FA patients.


Asunto(s)
Daño del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Reparación del ADN , Anemia de Fanconi/patología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Regulación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Unión Proteica , Transducción de Señal , Relación Estructura-Actividad , Ubiquitinación
14.
Mol Cell ; 65(2): 247-259, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27986371

RESUMEN

Monoubiquitination and deubiquitination of FANCD2:FANCI heterodimer is central to DNA repair in a pathway that is defective in the cancer predisposition syndrome Fanconi anemia (FA). The "FA core complex" contains the RING-E3 ligase FANCL and seven other essential proteins that are mutated in various FA subtypes. Here, we purified recombinant FA core complex to reveal the function of these other proteins. The complex contains two spatially separate FANCL molecules that are dimerized by FANCB and FAAP100. FANCC and FANCE act as substrate receptors and restrict monoubiquitination to the FANCD2:FANCI heterodimer in only a DNA-bound form. FANCA and FANCG are dispensable for maximal in vitro ubiquitination. Finally, we show that the reversal of this reaction by the USP1:UAF1 deubiquitinase only occurs when DNA is disengaged. Our work reveals the mechanistic basis for temporal and spatial control of FANCD2:FANCI monoubiquitination that is critical for chemotherapy responses and prevention of Fanconi anemia.


Asunto(s)
Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/metabolismo , Ubiquitinación , Línea Celular , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación E de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación L de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Factores de Tiempo , Transfección , Proteasas Ubiquitina-Específicas/metabolismo
15.
Tumour Biol ; 37(2): 2127-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26346170

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.


Asunto(s)
Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/fisiología , Neoplasias Esofágicas/metabolismo , Exorribonucleasas/metabolismo , Western Blotting , Cromatografía Líquida de Alta Presión , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Carcinoma de Células Escamosas de Esófago , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Humanos , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , Transcriptoma , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
16.
Oncol Rep ; 31(3): 1296-304, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24435655

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in endemic Asian regions. In the present study, we investigated the clinical implication and role of transferrin receptor CD71 in ESCC. CD71 has a physiological role in cellular iron intake and is implicated in the carcinogenesis of various types of tumors. In our cohort, more than a 2-fold upregulation of the CD71 transcript was detected in 61.5% of patients using quantitative polymerase chain reaction. Immunohistochemical analysis also showed strong membranous and cytoplasmic localization of CD71 in paraffin-embedded tumors. Staining parallel tumor sections with the proliferative marker Ki-67 revealed that the pattern of Ki-67 staining was associated with CD71 expression. Analysis of clinicopathological data indicated that CD71 overexpression can be used as an indicator for advanced T4 stage (p=0.0307). These data suggested a strong link between CD71 and ESCC. Subsequent in vitro assays using short interfering RNA (siRNA) to suppress CD71 expression confirmed the tumorigenic properties of CD71 in ESCC; cell growth inhibition and cell cycle arrest at S phase were observed in CD71-suppressed cells. The underlying mechanism involved activation of the MEK/ERK pathway. In summary, the present study provides evidence showing the tumorigenic properties of CD71 in ESCC with clinical correlations and suggests targeting CD71 as a strategy for the treatment of ESCC.


Asunto(s)
Antígenos CD/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Expresión Génica , Receptores de Transferrina/metabolismo , Anciano , Antígenos CD/genética , Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , ARN Interferente Pequeño/genética , Receptores de Transferrina/genética
17.
Genomics ; 103(2-3): 189-203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24462510

RESUMEN

Elucidating the molecular basis of hepatocellular carcinoma (HCC) is crucial to developing targeted diagnostics and therapies for this deadly disease. The landscape of somatic genomic rearrangements (GRs), which can lead to oncogenic gene fusions, remains poorly characterized in HCC. We have predicted 4314 GRs including large-scale insertions, deletions, inversions and translocations based on the whole-genome sequencing data for 88 primary HCC tumor/non-tumor tissues. We identified chromothripsis in 5 HCC genomes (5.7%) recurrently affecting chromosomal arms 1q and 8q. Albumin (ALB) was found to harbor GRs, deactivating mutations and deletions in 10% of cohort. Integrative analysis identified a pattern of paired intra-chromosomal translocations flanking focal amplifications and asymmetrical patterns of copy number variation flanking breakpoints of translocations. Furthermore, we predicted 260 gene fusions which frequently result in aberrant over-expression of the 3' genes in tumors and validated 18 gene fusions, including recurrent fusion (2/88) of ABCB11 and LRP2.


Asunto(s)
Carcinoma Hepatocelular/genética , Reordenamiento Génico , Genoma Humano , Neoplasias Hepáticas/genética , Translocación Genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 8/genética , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA