Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664789

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteocitos , Osteogénesis , Tropomiosina , Animales , Masculino , Ratones , Adipogénesis , Diferenciación Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/metabolismo , Osteocitos/metabolismo , Osteoporosis/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Nat Commun ; 14(1): 8461, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123537

RESUMEN

Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Ratones , Animales , Médula Ósea , Ratones Transgénicos
3.
Inflamm Res ; 72(10-11): 2053-2072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816881

RESUMEN

OBJECTIVE: Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS: We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS: F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS: F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Plata/uso terapéutico , Osteogénesis , Inflamación/tratamiento farmacológico , Inflamación/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Colágeno , Metotrexato/farmacología , Metotrexato/uso terapéutico , Metaloproteinasas de la Matriz
4.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35508803

RESUMEN

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Ratones , Osteocitos/metabolismo , Proteómica
5.
Sci Adv ; 8(15): eabg8335, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417243

RESUMEN

Osteonecrosis of the femoral head (ONFH) commonly occurs after glucocorticoid (GC) therapy. The gut microbiota (GM) participates in regulating host health, and its composition can be altered by GC. Here, this study demonstrates that cohousing with healthy mice or colonization with GM from normal mice attenuates GC-induced ONFH. 16S rRNA gene sequencing shows that cohousing with healthy mice rescues the GC-induced reduction of gut Lactobacillus animalis. Oral supplementation of L. animalis mitigates GC-induced ONFH by increasing angiogenesis, augmenting osteogenesis, and reducing cell apoptosis. Extracellular vesicles from L. animalis (L. animalis-EVs) contain abundant functional proteins and can enter the femoral head to exert proangiogenic, pro-osteogenic, and antiapoptotic effects, while its abundance is reduced after exposure to GC. Our study suggests that the GM is involved in protecting the femoral head by transferring bacterial EVs, and that loss of L. animalis and its EVs is associated with the development of GC-induced ONFH.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Osteonecrosis , Animales , Vesículas Extracelulares/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Ratones , Osteonecrosis/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
6.
Nat Commun ; 13(1): 1453, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304471

RESUMEN

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Animales , Matriz Ósea , Diferenciación Celular , Femenino , Ratones , MicroARNs/genética , Osteogénesis
7.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719888

RESUMEN

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Asunto(s)
Adipocitos/metabolismo , Huesos/metabolismo , Neuropéptido Y/metabolismo , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Adipogénesis/fisiología , Animales , Huesos/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocitos/metabolismo , Osteogénesis/fisiología , Osteoporosis/fisiopatología
9.
Theranostics ; 11(17): 8152-8171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373734

RESUMEN

Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Sepsis/tratamiento farmacológico , Plata/farmacología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Fructosa/farmacología , Proteínas Hemolisinas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Lipopolisacáridos/antagonistas & inhibidores , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Nanopartículas/uso terapéutico , Sepsis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
10.
Mol Cell Endocrinol ; 534: 111373, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34174367

RESUMEN

Fracture healing is a complicated process affected by many factors, such as inflammatory responses and angiogenesis. Omentin-1 is an adipokine with anti-inflammatory properties, but whether omentin-1 affects the fracture healing process is still unknown. Here, by using global omentin-1 knockout (omentin-1-/-) mice, we demonstrated that omentin-1 deficiency resulted in delayed fracture healing in mice, accompanied by increased inflammation and osteoclast formation, and decreased production of platelet-derived growth factor-BB (PDGF-BB) and osteogenesis-promoting vessels that are strongly positive for CD31 and Endomucin (CD31hiEmcnhi) in the fracture area. In vitro, omentin-1 treatment suppressed the ability of the tumor necrosis factor-α (TNF-α)-activated macrophages to stimulate multi-nuclear osteoclast formation, resulting in a significant increase in the generation of mono-nuclear preosteoclasts and PDGF-BB, a pro-angiogenic protein that is abundantly secreted by preosteoclasts. PDGF-BB significantly augmented endothelial cell proliferation, tube formation and migration, whereas direct treatment with omentin-1 did not induce obvious effects on angiogenesis activities of endothelial cells. Our study suggests a positive role of omentin-1 in fracture healing, which may be associated with the inhibition of inflammation and stimulation of preosteoclast PDGF-BB-mediated promotion of CD31hiEmcnhi vessel formation.


Asunto(s)
Citocinas/genética , Fracturas del Fémur/genética , Curación de Fractura , Proteínas Ligadas a GPI/genética , Lectinas/genética , Sialoglicoproteínas/metabolismo , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Fracturas del Fémur/etiología , Fracturas del Fémur/inmunología , Técnicas de Inactivación de Genes , Ratones , Osteoclastos/metabolismo , Osteogénesis , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Células RAW 264.7 , Microtomografía por Rayos X
11.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977075

RESUMEN

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Asunto(s)
Densidad Ósea/fisiología , Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/fisiología , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Factores de Edad , Anciano , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
12.
Theranostics ; 11(5): 2395-2409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500732

RESUMEN

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Autofagia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología
13.
Autophagy ; 17(10): 2766-2782, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33143524

RESUMEN

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Asunto(s)
Envejecimiento , Autofagia , Proteínas de Ciclo Celular , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Transporte de Membrana , Células Madre Mesenquimatosas , Adipogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Osteoporosis , Microtomografía por Rayos X
14.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097529

RESUMEN

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Asunto(s)
Quemaduras , Nanopartículas del Metal , Resinas Acrílicas , Animales , Antibacterianos/farmacología , Quemaduras/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ratones , Plata/farmacología , Cicatrización de Heridas
15.
Theranostics ; 10(17): 7710-7729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685015

RESUMEN

Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Osteosarcoma/tratamiento farmacológico , Plata/administración & dosificación , Adolescente , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Femenino , Fructosa/química , Humanos , Lactante , Recién Nacido , Inyecciones Intravenosas , Neoplasias Pulmonares/secundario , Masculino , Nanopartículas del Metal/química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteosarcoma/secundario , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eliminación Renal , Transducción de Señal/efectos de los fármacos , Plata/farmacocinética , Plata/orina , Distribución Tisular , Efecto Warburg en Oncología/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
16.
Acta Biomater ; 111: 208-220, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32447063

RESUMEN

Osteonecrosis of the femoral head (ONFH) frequently occurs after glucocorticoid (GC) treatment. Extracellular vesicles (EVs) are important nano-sized paracrine mediators of intercellular crosstalk. This study aimed to determine whether EVs from human urine-derived stem cells (USC-EVs) could protect against GC-induced ONFH and focused on the impacts of USC-EVs on angiogenesis and apoptosis to explore the mechanism by which USC-EVs attenuated GC-induced ONFH. The results in vivo showed that the intravenous administration of USC-EVs at the early stage of GC exposure could rescue angiogenesis impairment, reduce apoptosis of trabecular bone and marrow cells, prevent trabecular bone destruction and improve bone microarchitecture in the femoral heads of rats. In vitro, USC-EVs reversed the GC-induced suppression of endothelial angiogenesis and activation of apoptosis. Deleted in malignant brain tumors 1 (DMBT1) and tissue inhibitor of metalloproteinases 1 (TIMP1) proteins were enriched in USC-EVs and essential for the USC-EVs-induced pro-angiogenic and anti-apoptotic effects in GC-treated cells, respectively. Knockdown of TIMP1 attenuated the protective effects of USC-EVs against GC-induced ONFH. Our study suggests that USC-EVs are a promising nano-sized agent for the prevention of GC-induced ONFH by delivering pro-angiogenic DMBT1 and anti-apoptotic TIMP1. STATEMENT OF SIGNIFICANCE: This study demonstrates that the intravenous injection of extracellular vesicles from human urine-derived stem cells (USC-EVs) at the early stage of glucocorticoid (GC) exposure efficiently protects the rats from the GC-induced osteonecrosis of the femoral head (ONFH). Moreover, this study identifies that the promotion of angiogenesis and inhibition of apoptosis by transferring pro-angiogenic DMBT1 and anti-apoptotic TIMP1 proteins contribute importantly to the USC-EVs-induced protective effects against GC-induced ONFH. This study suggests the promising prospect of USC-EVs as a new nano-sized agent for protecting against GC-induced ONFH, and the potential of DMBT1 and TIMP1 as the molecular targets for further augmenting the protective function of USC-EVs.


Asunto(s)
Vesículas Extracelulares , Osteonecrosis , Animales , Proteínas de Unión al Calcio , Proliferación Celular , Proteínas de Unión al ADN , Cabeza Femoral , Glucocorticoides , Humanos , Ratas , Células Madre , Inhibidor Tisular de Metaloproteinasa-1 , Proteínas Supresoras de Tumor
17.
Oral Dis ; 26(5): 998-1009, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32144839

RESUMEN

OBJECTIVES: We aimed to investigate whether skeletal-specific H-type blood vessels exist in alveolar bone and how they function in alveolar bone remodeling. MATERIALS AND METHODS: H-type vessels with high expression of CD31 and Endomucin (CD31hi Emcnhi ) were immunostained in alveolar bone. Abundance and age-related changes in CD31hi Emcnhi endothelial cells (H-ECs) were detected by flow cytometry. Osteoprogenitors association with H-type vessels and bone mass were detected in tooth extraction model of alveolar bone remodeling by immunohistofluorescence and micro-CT, respectively. Transcription and expression of H-EC feature genes during in vitro Notch inhibition were measured by RT-qPCR and immunocytofluorescence. RESULTS: We verified that H-type vessels existed in alveolar bone, the abundance of which was highest at infancy age, then decreased but maintained a constant level during aging. In tooth extraction model, H-ECs significantly increased with concomitant perivascular accumulation of Runx2+ osteoprogenitors and gradually augmentation of bone mass. Notch inhibition of in vitro cultured H-ECs resulted in decreased expression levels of Emcn and hes1, but not Pecam1 or Kdr genes, with decreased expression levels of H-EC numbers, accordingly. CONCLUSIONS: The present study suggests that H-type vessels promote osteogenesis during alveolar bone remodeling. Notch signaling pathway regulates expression of Emcn and possibly determines fate and functions of alveolar H-ECs.


Asunto(s)
Remodelación Ósea , Células Endoteliales , Osteogénesis , Extracción Dental , Animales , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética
18.
Theranostics ; 10(8): 3779-3792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32206122

RESUMEN

Healing of the chronic diabetic ulceration and large burns remains a clinical challenge. Therapeutic fasting has been shown to improve health. Our study tested whether fasting facilitates diabetic and burn wound healing and explored the underlying mechanism. Methods: The effects of fasting on diabetic and burn wound healing were evaluated by analyzing the rates of wound closure, re-epithelialization, scar formation, collagen deposition, skin cell proliferation and neovascularization using histological analyses and immunostaining. In vitro functional assays were conducted to assess fasting and refeeding on the angiogenic activities of endothelial cells. Transcriptome sequencing was employed to identify the differentially expressed genes in endothelial cells after fasting treatment and the role of the candidate genes in the fasting-induced promotion of angiogenesis was demonstrated. Results: Two times of 24-h fasting in a week after but especially before wound injury efficiently induced faster wound closure, better epidermal and dermal regeneration, less scar formation and higher level of angiogenesis in mice with diabetic or burn wounds. In vitro, fasting alone by serum deprivation did not increase, but rather reduced the abilities of endothelial cell to proliferate, migrate and form vessel-like tubes. However, subsequent refeeding did not merely rescue, but further augmented the angiogenic activities of endothelial cells. Transcriptome sequencing revealed that fasting itself, but not the following refeeding, induced a prominent upregulation of a variety of pro-angiogenic genes, including SMOC1 (SPARC related modular calcium binding 1) and SCG2 (secretogranin II). Immunofluorescent staining confirmed the increase of SMOC1 and SCG2 expression in both diabetic and burn wounds after fasting treatment. When the expression of SMOC1 or SCG2 was down-regulated, the fasting/refeeding-induced pro-angiogenic effects were markedly attenuated. Conclusion: This study suggests that fasting combined with refeeding, but not fasting solely, enhance endothelial angiogenesis through the activation of SMOC1 and SCG2, thus facilitating neovascularization and rapid wound healing.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Ayuno , Neovascularización Fisiológica , Osteonectina/metabolismo , Repitelización , Secretogranina II/metabolismo , Animales , Quemaduras/terapia , Línea Celular , Proliferación Celular , Cicatriz/metabolismo , Células Endoteliales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piel/metabolismo , Piel/patología
19.
Theranostics ; 10(5): 2293-2308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089743

RESUMEN

Osteoporosis and osteoporotic fractures severely compromise quality of life in elderly people and lead to early death. Human umbilical cord mesenchymal stromal cell (MSC)-derived extracellular vesicles (hucMSC-EVs) possess considerable therapeutic effects in tissue repair and regeneration. Thus, in the present study, we investigated the effects of hucMSC-EVs on primary and secondary osteoporosis and explored the underlying mechanisms. Methods: hucMSCs were isolated and cultured. EVs were obtained from the conditioned medium of hucMSCs and determined by using transmission electron microscopy, dynamic light scattering and Western Blot analyses. The effects of hucMSC-EVs on ovariectomy-induced postmenopausal osteoporosis and tail suspension-induced hindlimb disuse osteoporosis in mouse models were assessed by using microcomputed tomography, biomechanical, histochemical and immunohistochemical, as well as histomorphometric analyses. Proteomic analysis was applied between hucMSC-EVs and hucMSCs to screen the candidate proteins that mediate hucMSC-EVs function. The effects of hucMSC-EVs on osteogenic and adipogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs), and osteoclastogenesis of the macrophage cell line RAW264.7 in vitro were determined by using cytochemical staining and quantitative real-time PCR analysis. Subsequently, the roles of the key protein in hucMSC-EVs-induced regulation on BMSCs and RAW264.7 cells were evaluated. Results: hucMSCs were able to differentiate into osteoblasts, adipocytes or chondrocytes and positively expressed CD29, CD44, CD73 and CD90, but negatively expressed CD34 and CD45. The morphological assessment revealed the typical cup- or sphere-shaped morphology of hucMSC-EVs with diameters predominantly ranging from 60 nm to 150 nm and expressed CD9, CD63, CD81 and TSG101. The systemic administration of hucMSC-EVs prevented bone loss and maintained bone strength in osteoporotic mice by enhancing bone formation, reducing marrow fat accumulation and decreasing bone resorption. Proteomic analysis showed that the potently pro-osteogenic protein, CLEC11A (C-type lectin domain family 11, member A) was very highly enriched in hucMSC-EVs. In addition, hucMSC-EVs enhanced the shift from adipogenic to osteogenic differentiation of BMSCs via delivering CLEC11A in vitro. Moreover, CLEC11A was required for the inhibitory effects of hucMSC-EVs on osteoclast formation. Conclusion: Our results suggest that hucMSC-EVs serve as a critical regulator of bone metabolism by transferring CLEC11A and may represent a potential agent for prevention and treatment of osteoporosis.


Asunto(s)
Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/metabolismo , Cordón Umbilical/metabolismo , Adipocitos/metabolismo , Adipogénesis , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/patología , Proteómica , Células RAW 264.7 , Cordón Umbilical/citología , Microtomografía por Rayos X
20.
Nanoscale ; 11(43): 20884-20892, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31660556

RESUMEN

In elderly people particularly in postmenopausal women, inadequate bone formation by osteoblasts originating from bone marrow mesenchymal stem cells (BMSCs) for compensation of bone resorption by osteoclasts is a major reason for osteoporosis. Enhancing osteoblastic differentiation of BMSCs is a feasible therapeutic strategy for osteoporosis. Here, bone marrow stromal cell (ST)-derived exosomes (STExos) are found to remarkably enhance osteoblastic differentiation of BMSCs in vitro. However, intravenous injection of STExos is inefficient in ameliorating osteoporotic phenotypes in an ovariectomy (OVX)-induced postmenopausal osteoporosis mouse model, which may be because STExos are predominantly accumulated in the liver and lungs, but not in bone. Hereby, the STExo surface is conjugated with a BMSC-specific aptamer, which delivers STExos into BMSCs within bone marrow. Intravenous injection of the STExo-Aptamer complex enhances bone mass in OVX mice and accelerates bone healing in a femur fracture mouse model. These results demonstrate the efficiency of BMSC-specific aptamer-functionalized STExos in targeting bone to promote bone regeneration, providing a novel promising approach for the treatment of osteoporosis and fracture.


Asunto(s)
Aptámeros de Nucleótidos/química , Regeneración Ósea , Exosomas/metabolismo , Animales , Aptámeros de Nucleótidos/metabolismo , Densidad Ósea , Células de la Médula Ósea/citología , Diferenciación Celular , Modelos Animales de Enfermedad , Exosomas/genética , Exosomas/trasplante , Fémur/diagnóstico por imagen , Citometría de Flujo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Osteoporosis/terapia , Distribución Tisular , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA