Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Biotechnol J ; 21(6): 1286-1300, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36952539

RESUMEN

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.


Asunto(s)
Hemípteros , Oryza , Animales , Glucanos/metabolismo , Oryza/genética , Oryza/metabolismo , Poaceae
2.
Theor Appl Genet ; 136(3): 38, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897431

RESUMEN

KEY MESSAGE: rAMP-seq based genomic selection for agronomic traits has been shown to be a useful tool for winter wheat breeding programs by increasing the rate of genetic gain. Genomic selection (GS) is an effective strategy to employ in a breeding program that focuses on optimizing quantitative traits, which results in the ability for breeders to select the best genotypes. GS was incorporated into a breeding program to determine the potential for implementation on an annual basis, with emphasis on selecting optimal parents and decreasing the time and costs associated with phenotyping large numbers of genotypes. The design options for applying repeat amplification sequencing (rAMP-seq) in bread wheat were explored, and a low-cost single primer pair strategy was implemented. A total of 1870 winter wheat genotypes were phenotyped and genotyped using rAMP-seq. The optimization of training to testing population size showed that the 70:30 ratio provided the most consistent prediction accuracy. Three GS models were tested, rrBLUP, RKHS and feed-forward neural networks using the University of Guelph Winter Wheat Breeding Program (UGWWBP) and Elite-UGWWBP populations. The models performed equally well for both populations and did not differ in prediction accuracy (r) for most agronomic traits, with the exception of yield, where RKHS performed the best with an r = 0.34 and 0.39 for each population, respectively. The ability to operate a breeding program where multiple selection strategies, including GS, are utilized will lead to higher efficiency in the program and ultimately lead to a higher rate of genetic gain.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Fenotipo , Genotipo , Genómica/métodos , Selección Genética , Modelos Genéticos
3.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513604

RESUMEN

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Asunto(s)
Arabidopsis , Estrés Fisiológico , Factores de Transcripción , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulación de la Expresión Génica de las Plantas , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Fenómenos Fisiológicos de las Plantas , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33151138

RESUMEN

The plant growth-promoting rhizobacterium Delftia acidovorans RAY209 is capable of establishing strong root attachment during early plant development at 7 days post-inoculation. The transcriptional response of RAY209 was measured using RNA-seq during early (day 2) and sustained (day 7) root colonization of canola plants, capturing RAY209 differentiation from a medium-suspended cell state to a strongly root-attached cell state. Transcriptomic data was collected in an identical manner during RAY209 interaction with soybean roots to explore the putative root colonization response to this globally relevant crop. Analysis indicated there is an increased number of significantly differentially expressed genes between medium-suspended and root-attached cells during early soybean root colonization relative to sustained colonization, while the opposite temporal pattern was observed for canola root colonization. Regardless of the plant host, root-attached RAY209 cells exhibited the least amount of differential gene expression between early and sustained root colonization. Root-attached cells of either canola or soybean roots expressed high levels of a fasciclin gene homolog encoding an adhesion protein, as well as genes encoding hydrolases, multiple biosynthetic processes, and membrane transport. Notably, while RAY209 ABC transporter genes of similar function were transcribed during attachment to either canola or soybean roots, several transporter genes were uniquely differentially expressed during colonization of the respective plant hosts. In turn, both canola and soybean plants expressed genes encoding pectin lyase and hydrolases - enzymes with purported function in remodelling extracellular matrices in response to RAY209 colonization. RAY209 exhibited both a core regulatory response and a planthost-specific regulatory response to root colonization, indicating that RAY209 specifically adjusts its cellular activities to adapt to the canola and soybean root environments. This transcriptomic data defines the basic RAY209 response as both a canola and soybean commercial crop and seed inoculant.


Asunto(s)
Adaptación Fisiológica/genética , Brassica napus/microbiología , Delftia acidovorans/genética , Glycine max/microbiología , Raíces de Plantas/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Brassica napus/crecimiento & desarrollo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Delftia acidovorans/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Desarrollo de la Planta , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Glycine max/crecimiento & desarrollo
5.
Plants (Basel) ; 9(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085442

RESUMEN

In Arabidopsis thaliana, LONG-CHAIN ACYL-COA SYNTHETASEs (LACSs) catalyze the synthesis of long-chain acyl-CoAs and function in diverse biological processes. We have recently revealed that LACS2 is primarily involved in the production of polyunsaturated linolenoyl-CoA, essential for the activation of ethylene response transcription factors-mediated hypoxia signaling. Here, we further reported the dual role of LACS2 in the regulation of submergence tolerance by modulating cuticle permeability in Arabidopsis cells. LACS2-overexpressors (LACS2-OEs) showed improved tolerance to submergence, with higher accumulation of cuticular wax and cutin in their rosettes. In contrast, knockout of LACS2 in the lacs2-3 mutant resulted in hypersensitivity to submergence with reduced wax crystals and thinner cutin layer. By analyses of plant surface permeability, we observed that the hypoxic sensitivities in the LACS2-OEs and lacs2-3 mutant were physiologically correlated with chlorophyll leaching, water loss rates, ionic leakage, and gas exchange. Thus, our findings suggest the role of LACS2 in plant response to submergence by modulating cuticle permeability in plant cells.

6.
J Integr Plant Biol ; 62(3): 330-348, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31595698

RESUMEN

In plants, submergence from flooding causes hypoxia, which impairs energy production and affects plant growth, productivity, and survival. In Arabidopsis, hypoxia induces nuclear localization of the group VII ethylene-responsive transcription factor RELATED TO AP2.12 (RAP2.12), following its dissociation from the plasma membrane-anchored ACYL-COA BINDING PROTEIN1 (ACBP1) and ACBP2. Here, we show that polyunsaturated linolenoyl-CoA (18:3-CoA) regulates RAP2.12 release from the plasma membrane. Submergence caused a significant increase in 18:3-CoA, but a significant decrease in 18:0-, 18:1-, and 18:2-CoA. Application of 18:3-CoA promoted nuclear accumulation of the green fluorescent protein (GFP) fusions RAP2.12-GFP, HYPOXIA-RESPONSIVE ERF1-GFP, and RAP2.3-GFP, and enhanced transcript levels of hypoxia-responsive genes. Plants with decreased ACBP1 and ACBP2 (acbp1 ACBP2-RNAi, produced by ACBP2 RNA interference in the acbp1 mutant) had reduced tolerance to hypoxia and impaired 18:3-CoA-induced expression of hypoxia-related genes. In knockout mutants and overexpression lines of LONG-CHAIN ACYL-COA SYNTHASE2 (LACS2) and FATTY ACID DESATURASE 3 (FAD3), the acyl-CoA pool size and 18:3-CoA levels were closely related to ERF-VII-mediated signaling and hypoxia tolerance. These findings demonstrate that polyunsaturation of long-chain acyl-CoAs functions as important mechanism in the regulation of plant hypoxia signaling, by modulating ACBP-ERF-VII dynamics.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
BMC Genomics ; 20(1): 925, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31795948

RESUMEN

BACKGROUND: Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. RESULTS: Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. CONCLUSIONS: Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium , Redes Reguladoras de Genes , Triticum/genética , Triticum/microbiología , Expresión Génica , Genotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Tetraploidía , Triticum/metabolismo
8.
Front Microbiol ; 9: 1061, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930539

RESUMEN

Clonostachys rosea strain ACM941 is a fungal bio-control agent patented against the causative agent of Fusarium Head Blight, Fusarium graminearum. Although the molecular details remain enigmatic, previous studies have suggested that C. rosea may secrete F. graminearum growth inhibitors. Further toward this, experiments described herein show that induction of C. rosea cultures by the addition of an aliquot of F. graminearum(Fg)-spent media (including macroconidia), yield C. rosea (Cr)-spent media that elicited higher anti-F. graminearum activity than either control or deoxynivalenol (DON)-induced Cr-spent media. To gain additional insight into the genetic and metabolic factors modulating this interaction, transcriptomic (RNAseq) profiles of C. rosea in response to DON and Fg-spent media treatment, were developed. This analysis revealed 24,112 C. rosea unigenes, of which 5,605 and 6,285 were differentially regulated by DON and F-spent media, respectively. More than half of these unigenes were up-regulated, with annotations, most notably in the Fg-spent media treatment data, suggesting enhancement of polyketide (PK) and non-ribosomal peptide (NRP) secondary metabolite precursor synthesis, and PK/NRP-like synthases. Four ABC transporters were also up-regulated in response to Fg-spent media. Further analysis showed that the PK and NRP-like synthases belong to three gene clusters that also include ABC transporters, and other genes known to tailor secondary metabolite biosynthesis. The RNAseq data was further validated using quantitative RT-qPCR. Taken together, these results show that C. rosea responds to the presence of Fg-spent media (and to a lesser extent, DON-alone) by up-regulating unique aspects of its secondary metabolism-related genetic repertoire. The identities and roles of C. rosea secondary metabolites produced by the targeted gene clusters are now under investigation.

9.
Plant J ; 90(5): 966-978, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28244172

RESUMEN

Fatty acid biosynthesis is a primary metabolic pathway that occurs in plastids, whereas the formation of glycerolipid molecules for the majority of cellular membrane systems and the deposition of storage lipid in seeds takes place in the cytosolic compartment. In this report, we present a study of an Arabidopsis mutant, ar21, with a novel seed fatty acid phenotype showing higher contents of eicosanoic acid (20:1) and oleic acid (18:1) and a reduced level of α-linolenic acid (18:3). A combination of map-based cloning and whole-genome sequencing identified the genetic basis underlying the fatty acid phenotype as a lesion in the plant-specific eukaryotic translation initiation factor eIFiso4G1. Transcriptome analysis on developing seeds revealed a reduced level of plastid-encoded genes. Specifically, decreases in both transcript and protein levels of an enzyme involved in fatty acid biosynthesis, the ß-subunit of the plastidic heteromeric acetyl-CoA carboxylase (htACCase) encoded by accD, were evident in the mutant. Biochemical assays showed that the developing seeds of the mutant possessed a decreased htACCase activity in the plastid but an elevated activity of homomeric acetyl-CoA carboxylase (hmACCase). These results suggested that the increased 20:1 was attributable at least in part to the enhanced cytosolic hmACCase activity. We also detected a significant repression of FATTY ACID DESATURASE 3 (FAD3) during seed development, which correlated with a decreased 18:3 level in seed oil. Together, our study on a mutant of eIFiso4G1 uncovered multifaceted interactions between the cytosolic and plastidic compartments in seed lipid biosynthesis that impact major seed oil traits.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factor 4G Eucariótico de Iniciación/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , Plantas Modificadas Genéticamente/genética , Semillas/genética
10.
Plant Mol Biol ; 85(4-5): 519-39, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24831512

RESUMEN

Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.


Asunto(s)
Brassica/anatomía & histología , Brassica/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Tricomas/fisiología , Brassica/genética , Metales , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis por Matrices de Proteínas , Plantones
11.
Plant Cell ; 18(2): 422-41, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16415206

RESUMEN

A mitochondrial glycerol-3-phosphate (G-3-P) shuttle that channels cytosolic reducing equivalent to mitochondria for respiration through oxidoreduction of G-3-P has been extensively studied in yeast and animal systems. Here, we report evidence for the operation of such a shuttle in Arabidopsis thaliana. We studied Arabidopsis mutants defective in a cytosolic G-3-P dehydrogenase, GPDHc1, which, based on models described for other systems, functions as the cytosolic component of a G-3-P shuttle. We found that the gpdhc1 T-DNA insertional mutants exhibited increased NADH/NAD+ ratios compared with wild-type plants under standard growth conditions, as well as impaired adjustment of NADH/NAD+ ratios under stress simulated by abscisic acid treatment. The altered redox state of the NAD(H) pool was correlated with shifts in the profiles of metabolites concerning intracellular redox exchange. The impairment in maintaining cellular redox homeostasis was manifest by a higher steady state level of reactive oxygen species under standard growth conditions and by a significantly augmented hydrogen peroxide production under stress. Loss of GPDHc1 affected mitochondrial respiration, particularly through a diminished capacity of the alternative oxidase respiration pathway. We propose a model that outlines potential involvements of a mitochondrial G-3-P shuttle in plant cells for redox homeostasis.


Asunto(s)
Arabidopsis/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicerofosfatos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Transporte Biológico , Clonación Molecular , Citosol/enzimología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/genética , Glicerolfosfato Deshidrogenasa/deficiencia , Glicerolfosfato Deshidrogenasa/genética , Mitocondrias/enzimología , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Fenotipo , Hojas de la Planta/anatomía & histología , Especies Reactivas de Oxígeno/metabolismo , Plantones/anatomía & histología , Plantones/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA