Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834675

RESUMEN

Monitoring and warning of ice on pavement surfaces are effective means to improve traffic safety in winter. In this study, a high-precision piezoelectric sensor was developed to monitor pavement surface conditions. The effects of the pavement surface temperature, water depth, and wind speed on pavement icing time were investigated. Then, on the basis of these effects, an early warning model of pavement icing was proposed using an artificial neural network. The results showed that the sensor could detect ice or water on the pavement surface. The measurement accuracy and reliability of the sensor were verified under long-term vehicle load, temperature load, and harsh natural environment using test data. Moreover, pavement temperature, water depth, and wind speed had a significant nonlinear effect on the pavement icing time. The effect of the pavement surface temperature on icing conditions was maximal, followed by the effect of the water depth. The effect of the wind speed was moderate. The model with a learning rate of 0.7 and five hidden units had the best prediction effect on pavement icing. The prediction accuracy of the early warning model exceeded 90%, permitting nondestructive and rapid detection of pavement icing based on meteorological information.

2.
Materials (Basel) ; 15(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295429

RESUMEN

An adaptive image-processing method for CT images of asphalt mixture is proposed in this paper. Different methods are compared according to the error analysis calculated between the real gradation and 3D reconstruction gradation. As revealed by the test results, the adaptive image-processing method was effective in carrying out different brightness homogenization processes for each image. The Wiener filter with 7 × 7 size filter was able to produce a better noise reduction effect without compromising image sharpness. Among the three methods, the adaptive image-processing method performed best in the accuracy of coarse aggregate recognition, followed by the ring division method and the global threshold segmentation method. The error of the gradation extracted by the adaptive image-processing method was found to be lowest compared with the real gradation. For a variety of engineering applications, the developed method helps to improve the analysis of CT images of asphalt mixtures.

3.
J Microsc ; 284(3): 244-255, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34494267

RESUMEN

The adhesion between asphalt binder and aggregate is very important to the performance and durability of asphalt pavement. In order to explore the characterisation of modified asphalt binder in microstructure during aging and rejuvenation, the virgin asphalt binder and three kinds of modified asphalt binder (styrene-butadiene-styrene block copolymer (SBS), rubber powder and high viscosity and high elasticity [HVHE] modifier) in different aging and rejuvenation condition were prepared. The micromorphology and surface adhesion were measured by atomic force microscopy. The average roughness value was used as the index to evaluate the micromorphology of asphalt binder. The surface adhesion was used as the index to evaluate the adhesion properties of asphalt binder. Results show that the "bee" structure of SBS-modified asphalt binder increased slightly after long-term aging, and the recovery effect of aromatics oil was the closest to that of the unaged one. The rubber powder-modified asphalt binder and HVHE-modified asphalt binder showed the spot structure. And no matter for short-term aging or long-term aging, aromatics oil had the best recovery effect on micro morphology. The adhesion of the three modified asphalts would decrease gradually after aging. The effects of three kinds of rejuvenator on the adhesion of SBS-modified asphalt binder and rubber powder-modified asphalt binder were different. Rejuvenator, aromatic oil and warm mix asphalt mixture (WMA) additive could rejuvenate the loss of adhesion of HVHE-modified asphalt binder to a certain extent.

4.
Materials (Basel) ; 13(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167575

RESUMEN

Thermoplastic polyurethane elastomers (TPUs) are widely used in a variety of applications as a result of flexible and superior performance. However, few scholars pay close attention on the design and synthesis of TPUs through the self-determined laboratory process, especially on definite of chemical structures and upon the influence on properties. To investigate the properties of synthesized modifier based on chemical structure, firstly each kind of unknown structure and composition ratio of TPUs was determined by using a new method. Furthermore, the thermal characteristics and mechanical properties of modifiers were exposed by thermal characteristics and mechanics performance tests. The experimental results indicate that TPUs for use as an asphalt modifier can successfully be synthesized with the aid of semi-prepolymer method. The linear backbone structure of TPUs with different hard segment contents were determined by micro test methods. The polyester-based TPUs had thermal behavior better than the polyether-based TPUs; conversely, the low temperature performance of polyether-based TPUs was superior. Most importantly, it was found that the relative molecular mass of TPUs exhibited a weak effect on the mechanical properties, whereas the crystallinity of hard segment showed a significant influence on the properties of TPUs.

5.
Materials (Basel) ; 13(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290203

RESUMEN

Rutting has always been considered the main disease in asphalt pavement. Dealing with rutting disease would be benefitted by understanding the formation of rutting and testing the rutting performance of mixtures more reasonably. The objective of this paper is to systematically investigate the rutting mechanism by employing a self-designed rutting tester along with the corresponding numerical simulations. The deformation of different positions of the existing tracking tester was found to be inconsistent, and the loading was not in line with reality. Accordingly, a more practical tester was proposed: the reduced scale circular tracking (RSCT) tester integrates the functions of asphalt mixture fabrication and rutting monitoring. The results demonstrated that the loading of the new tester is closer to the actual situation. In addition, determining the stress and displacement characteristics of particles in the asphalt mixture was found to be difficult due to the limitations of the testing methods. Therefore, a two-dimensional virtual rutting test based on the RSCT was built using PFC2D (Particle Flow Code 2 Dimension) to investigate the mechanism of formation in rutting and to obtain the corresponding guidance. The numerical simulation showed that all particles of the specimen tended to move away from the load location. The main cause of rutting formation was the eddy current flow of asphalt mastic driven by coarse aggregates. The aggregates with diameters ranging from 9.5 to 4.75 mm were observed to have the greatest contribution to rutting deformation. Therefore, the aggregate amount of these spans should be focused on in the design of mixture grading.

6.
Materials (Basel) ; 12(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212746

RESUMEN

Warm mix asphalt mixtures have the advantages of energy saving, emission reduction and good road performance. Zeolite asphalt mixtures, as a warm mixing technology, have been applied in the world. To understand the warm mix mechanism of zeolite warm mix asphalt mixture, the mesoscale structure of zeolite asphalt is studied. Micro computed tomography (CT) is utilized to obtain the internal structure image of zeolite-modified asphalt and asphalt mixture. The quantity and volume of voids are used as internal void distribution evaluation indexes. The results indicate that with respect to the void distribution in zeolite-modified asphalt, with the increase of temperature, there is an obvious evolution trend of smaller voids to larger voids. With respect to the voids in the zeolite-modified asphalt mixture, the zeolite asphalt mixture is equivalent to hot mix asphalt mixture when it is above 120 °C, while below 120 °C, the maximum and average void volumes increase significantly, making it difficult for the mixture to achieve ideal compaction effect.

7.
Nanomaterials (Basel) ; 9(4)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974787

RESUMEN

Graphene has attracted attention in the material field of functional microcapsules because of its excellent characteristics. The content and state of graphene in shells are critical for the properties of microcapsules, which are greatly affected by the charge adsorption equilibrium. The aim of this work was to investigate the effect of pH value on the microstructure and properties of self-assembly graphene microcapsules in regard to chemical engineering. Microcapsule samples were prepared containing liquid paraffin by a self-assembly polymerization method with graphene/organic hybrid shells. The morphology, average size and shell thickness parameters were investigated for five microcapsule samples fabricated under pH values of 3, 4, 5, 6 and 7. The existence and state of graphene in dry microcapsule samples were analyzed by using methods of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Fourier Transform Infrared Spectoscopy (FT-IR) and Energy Dispersive Spectrometer (EDS) were applied to analyze the graphene content in shells. These results proved that graphene had existed in shells and the pH values greatly influenced the graphene deposition on shells. It was found that the microcapsule sample fabricated under pH = 5 experienced the largest graphene deposited on shells with the help of macromolecules entanglement and electrostatic adherence. This microcapsules sample had enhanced thermal stability and larger thermal conductivity because of additional graphene in shells. Nanoindentation tests showed this sample had the capability of deforming resistance under pressure coming from the composite structure of graphene/polymer structure. Moreover, more graphene decreased the penetrability of core material out of microcapsule shells.

8.
Nanomaterials (Basel) ; 8(6)2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29890764

RESUMEN

Self-healing bituminous material has been a hot research topic in self-healing materials, and this smart self-healing approach is a promising a revolution in pavement material technology. Bitumen has a self-healing naturality relating to temperature, healing time, and aging degree. To date, heat induction and microencapsulation rejuvenator are two feasible approaches, which have been put into real applications. However, both methods have disadvantages limiting their practical results and efficiency. It will be an ideal method combining the advantages and avoiding the disadvantages of the above two methods at the same time. The aim of this work was to synthesize and characterize electrothermal self-healing microcapsules containing bituminous rejuvenator with graphene/organic nanohybrid structure shells. The microcapsules owned electric conductivity capability because of the advent of graphene, and realized the self-healing through the two approaches of heat induction and rejuvenation. The microcapsule shells were fabricated using a strength hexamethoxymethylmelamine (HMMM) resin and graphene by two-step hybrid polymerization. Experimental tests were carried out to character the morphology, integrity, and shell structure. It was found that the electric charge balance determined the graphene/HMMM microstructure. The graphene content in shells could not be greatly increased under an electrostatic balance in emulsion. X-ray photoelectron spectroscopy (XPS), Energy dispersive spectrometer (EDS), Transmission electron microscope (TEM) and Atomic force microscopy (AFM) results indicated that the graphene had deposited on shells. TGA/DTG tests implied that the thermal decomposition temperature of microcapsules with graphene had increased to about 350 °C. The thermal conductivity of microcapsules had been sharply increased to about 8.0 W/m²·K with 2.0 wt % graphene in shells. At the same time, electrical resistivity of microcapsules/bitumen samples had a decrease with more graphene in bitumen.

9.
Entropy (Basel) ; 20(2)2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33265169

RESUMEN

The thermodynamic behavior of asphalt mixtures is critical to the engineers since it directly relates to the damage in asphalt mixtures. However, most of the current research of the freeze-thaw damage of asphalt mixtures is focused on the bulk body from the macroscale and lacks a fundamental understanding of the thermodynamic behaviors of asphalt mixtures from the microscale perspective. In this paper, to identify the important thermodynamic behaviors of asphalt mixtures under freeze-thaw loading cycle, the information entropy theory, an X-ray computerized tomography (CT) scanner and digital image processing technology are employed. The voids, the average size of the voids, the connected porosity, and the void number are extracted according to the scanned images. Based on the experiments and the CT scanned images, the information entropy evolution of the asphalt mixtures under different freeze-thaw cycles is calculated and the relationship between the change of information entropy and the pore structure characteristics is established. Then, the influences of different freezing and thawing conditions on the thermodynamic behaviors of asphalt mixtures are compared. The combination of information entropy theory and CT scanning technique proposed in this paper provides an innovative approach to investigate the thermodynamics behaviors of asphalt mixtures and a new way to analyze the freeze-thaw damage in asphalt mixtures.

10.
Materials (Basel) ; 10(5)2017 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-28772867

RESUMEN

Properties of cement-stabilized gravel modified by emulsified asphalt under freezing and thawing cycle conditions were investigated by adjusting the dosage of cement. Mercury intrusion porosimetry (MIP) and Scanning electron microscopy (SEM) were introduced to analyze the influential mechanism. The results indicate that cement emulsified asphalt stabilized gravel with 5 wt % of cement performed well in both mechanics and frost-resistance. Although the addition of emulsified asphalt would lead to a partial decrease of strength, it can extend the process of strength loss and improve the freezing resistance. The main reason for this is that the permeability can be improved by the filling effects of emulsified asphalt. The frost-heave stress caused by the phase transition of water can also be remitted by emulsified asphalt, the elasticity modulus of which is much lower than the matrix. The generating speed of the micro crack can also be slowed down by emulsified asphalt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA