Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496258

RESUMEN

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
2.
Mol Cell ; 76(4): 600-616.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31679819

RESUMEN

Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation.


Asunto(s)
Genoma Humano , Regiones Promotoras Genéticas , Estructuras R-Loop , ARN sin Sentido/biosíntesis , ARN Largo no Codificante/biosíntesis , Transcripción Genética , Activación Transcripcional , Células HEK293 , Células HeLa , Humanos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Relación Estructura-Actividad
3.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478192

RESUMEN

During DNA replication, conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R-loops, three-stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single-stranded DNA, are important drivers of damage arising from such conflicts. How R-loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here, we show in vivo how R-loop formation drives a short purine-rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase-polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R-loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R-loop formation in genes harbouring secondary structure-forming sequences, exemplified by G quadruplex and H-DNA motifs, across the genome in both avian and human cells. Thus, R-loops promote the creation of replication blocks at susceptible structure-forming sequences, while PrimPol-dependent repriming limits the extent of unscheduled R-loop formation at these sequences, mitigating their impact on replication.


Asunto(s)
ADN Primasa/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , G-Cuádruplex , Enzimas Multifuncionales/metabolismo , Estructuras R-Loop , Fase S , Animales , Células Cultivadas , Pollos , ADN Primasa/genética , ADN de Cadena Simple/química , ADN Polimerasa Dirigida por ADN/genética , Drosophila , Humanos , Enzimas Multifuncionales/genética
4.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30449723

RESUMEN

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Asunto(s)
Proliferación Celular , Senescencia Celular , Daño del ADN , Replicación del ADN , ADN de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , Factores de Transcripción/genética , Transcripción Genética , Neoplasias Uterinas/genética
5.
Trends Biochem Sci ; 39(7): 319-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928762

RESUMEN

Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Terminación de la Transcripción Genética , Animales , Humanos , Regiones Promotoras Genéticas
6.
Elife ; 2: e00914, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23795299

RESUMEN

A protein long recognized for its role in DNA repair has now paradoxically been implicated in DNA damage.


Asunto(s)
Inestabilidad Cromosómica , ADN/genética , Recombinación Homóloga , Hibridación de Ácido Nucleico , ARN/genética , Humanos
7.
Science ; 338(6107): 671-5, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23019609

RESUMEN

Eukaryotic genomes are extensively transcribed, forming both messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). ncRNAs made by RNA polymerase II often initiate from bidirectional promoters (nucleosome-depleted chromatin) that synthesize mRNA and ncRNA in opposite directions. We demonstrate that, by adopting a gene-loop conformation, actively transcribed mRNA encoding genes restrict divergent transcription of ncRNAs. Because gene-loop formation depends on a protein factor (Ssu72) that coassociates with both the promoter and the terminator, the inactivation of Ssu72 leads to increased synthesis of promoter-associated divergent ncRNAs, referred to as Ssu72-restricted transcripts (SRTs). Similarly, inactivation of individual gene loops by gene mutation enhances SRT synthesis. We demonstrate that gene-loop conformation enforces transcriptional directionality on otherwise bidirectional promoters.


Asunto(s)
Genes Fúngicos , ARN Mensajero/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Genoma Fúngico , Mutación , Conformación de Ácido Nucleico , Fosfoproteínas Fosfatasas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
8.
Transcription ; 3(4): 198-212, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22992452

RESUMEN

Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas SNARE/genética , Secuencias Repetidas en Tándem , Regiones Terminadoras Genéticas , Terminación de la Transcripción Genética/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Orden Génico , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Proteínas SNARE/metabolismo , Factor de Transcripción TFIIB/metabolismo , Transcripción Genética
9.
Genes Dev ; 23(22): 2610-24, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933151

RESUMEN

Inducible genes in yeast retain a "memory" of recent transcriptional activity during periods of short-term repression, allowing them to be reactivated faster when reinduced. This confers a rapid and versatile gene expression response to the environment. We demonstrate that this memory mechanism is associated with gene loop interactions between the promoter and 3' end of the responsive genes HXK1 and GAL1FMP27. The maintenance of these memory gene loops (MGLs) during intervening periods of transcriptional repression is required for faster RNA polymerase II (Pol II) recruitment to the genes upon reinduction, thereby facilitating faster mRNA accumulation. Notably, a sua7-1 mutant or the endogenous INO1 gene that lacks this MGL does not display such faster reinduction. Furthermore, these MGLs interact with the nuclear pore complex through association with myosin-like protein 1 (Mlp1). An mlp1Delta strain does not maintain MGLs, and concomitantly loses transcriptional memory. We predict that gene loop conformations enhance gene expression by facilitating rapid transcriptional response to changing environmental conditions.


Asunto(s)
ADN de Hongos/metabolismo , Poro Nuclear/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Polimerasa II/metabolismo , Regulación Fúngica de la Expresión Génica , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/genética
10.
Proc Natl Acad Sci U S A ; 105(13): 5160-5, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18375767

RESUMEN

The 85-kb breast cancer-associated gene BRCA1 is an established tumor suppressor gene, but its regulation is poorly understood. We demonstrate by gene conformation analysis in both human cell lines and mouse mammary tissue that gene loops are imposed on BRCA1 between the promoter, introns, and terminator region. Significantly, association between the BRCA1 promoter and terminator regions change upon estrogen stimulation and during lactational development. Loop formation is transcription-dependent, suggesting that transcriptional elongation plays an active role in BRCA1 loop formation. We show that the BRCA1 terminator region can suppress estrogen-induced transcription and so may regulate BRCA1 expression. Significantly, BRCA1 promoter and terminator interactions vary in different breast cancer cell lines, indicating that defects in BRCA1 chromatin structure may contribute to dysregulated expression of BRCA1 seen in breast tumors.


Asunto(s)
Proteína BRCA1/genética , ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Regiones Terminadoras Genéticas/genética , Animales , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN/química , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Transcripción Genética/genética
11.
Nat Genet ; 36(9): 1014-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15314641

RESUMEN

Mechanistic analysis of transcriptional initiation and termination by RNA polymerase II (PolII) indicates that some factors are common to both processes. Here we show that two long genes of Saccharomyces cerevisiae, FMP27 and SEN1, exist in a looped conformation, effectively bringing together their promoter and terminator regions. We also show that PolII is located at both ends of FMP27 when this gene is transcribed from a GAL1 promoter under induced and noninduced conditions. Under these conditions, the C-terminal domain of the large subunit of PolII is phosphorylated at Ser5. Notably, inactivation of Kin28p causes a loss of both Ser5 phosphorylation and the loop conformation. These data suggest that gene loops are involved in the early stages of transcriptional activation. They also predict a previously unknown structural dimension to gene regulation, in which both ends of the transcription unit are defined before and during the transcription cycle.


Asunto(s)
Proteínas Fúngicas/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN Helicasas , Proteínas Fúngicas/química , Modelos Genéticos , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Fosforilación , ARN Helicasas , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/química , Regiones Terminadoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA