Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Chem Sci ; 15(32): 12889-12899, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148796

RESUMEN

The capsular polysaccharide (CPS) is a major virulence factor of the pathogenic Acinetobacter baumannii and a promising target for vaccine development. However, the synthesis of the 1,2-cis-2-amino-2-deoxyglycoside core of CPS remains challenging to date. Here we develop a highly α-selective ZnI2-mediated 1,2-cis 2-azido-2-deoxy chemical glycosylation strategy using 2-azido-2-deoxy glucosyl donors equipped with various 4,6-O-tethered groups. Among them the tetraisopropyldisiloxane (TIPDS)-protected 2-azido-2-deoxy-d-glucosyl donor afforded predominantly α-glycoside (α : ß = >20 : 1) in maximum yield. This novel approach applies to a wide acceptor substrate scope, including various aliphatic alcohols, sugar alcohols, and natural products. We demonstrated the versatility and effectiveness of this strategy by the synthesis of A. baumannii K48 capsular pentasaccharide repeating fragments, employing the developed reaction as the key step for constructing the 1,2-cis 2-azido-2-deoxy glycosidic linkage. The reaction mechanism was explored with combined experimental variable-temperature NMR (VT-NMR) studies and mass spectroscopy (MS) analysis, and theoretical density functional theory calculations, which suggested the formation of covalent α-C1GlcN-iodide intermediate in equilibrium with separated oxocarbenium-counter ion pair, followed by an SN1-like α-nucleophilic attack most likely from separated ion pairs by the ZnI2-activated acceptor complex under the influence of the 2-azido gauche effect.

2.
Angew Chem Int Ed Engl ; : e202411225, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989662

RESUMEN

Methods for producing drugs directly at the cancer site, particularly using bioorthogonal metal catalysts, are being explored to mitigate the side effects of therapy. Albumin-based artificial metalloenzymes (ArMs) catalyze reactions in living mice while protecting the catalyst in the hydrophobic pocket. Here, we describe the in situ preparation and application of biocompatible tumor-targeting ArMs using circulating albumin, which is abundant in the bloodstream. The ArM was formed using blood albumin through the intravenous injection of ruthenium conjugated with an albumin-binding ligand; the tumor-targeting unit was conjugated to the ArM using its catalytic activity, and the ArM was transported to the cancer site. The delivered ArM catalyzed a second tagging reaction of the proapoptotic peptide on the cancer surface, successfully suppressing cancer proliferation. This approach, which efficiently leveraged the persisting reactivity twice in vivo, holds promise for future in vivo metal-catalyzed drug synthesis utilizing endogenous albumin.

3.
Theor Appl Genet ; 137(7): 174, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954043

RESUMEN

KEY MESSAGE: Genotyping-by-sequencing of 723 worldwide cucumber genetic resources revealed that cucumbers were dispersed eastward via at least three distinct routes, one to Southeast Asia and two from different directions to East Asia. The cucumber (Cucumis sativus) is an economically important vegetable crop cultivated and consumed worldwide. Despite its popularity, the manner in which cucumbers were dispersed from their origin in South Asia to the rest of the world, particularly to the east, remains a mystery due to the lack of written records. In this study, we performed genotyping-by-sequencing (GBS) on 723 worldwide cucumber accessions, mainly deposited in the Japanese National Agriculture and Food Research Organization (NARO) Genebank, to characterize their genetic diversity, relationships, and population structure. Analyses based on over 60,000 genome-wide single-nucleotide polymorphisms identified by GBS revealed clear genetic differentiation between Southeast and East Asian populations, suggesting that they reached their respective region independently, not progressively. A deeper investigation of the East Asian population identified two subpopulations with different fruit characteristics, supporting the traditional classification of East Asian cucumbers into two types thought to have been introduced by independent routes. Finally, we developed a core collection of 100 accessions representing at least 93.2% of the genetic diversity present in the entire collection. The genetic relationships and population structure, their associations with geographic distribution and phenotypic traits, and the core collection presented in this study are valuable resources for elucidating the dispersal history and promoting the efficient use and management of genetic resources for research and breeding in cucumber.


Asunto(s)
Cucumis sativus , Polimorfismo de Nucleótido Simple , Cucumis sativus/genética , Genética de Población , Genotipo , Variación Genética , Asia Oriental
4.
Artículo en Inglés | MEDLINE | ID: mdl-39063404

RESUMEN

The aims of this study were as follows: the (a) creation of a pregnant occupant finite element model based on pregnant uterine data from sonography, (b) development of the evaluation method for placental abruption using this model and (c) analysis of the effects of three factors (collision speed, seatbelt position and placental position) on the severity of placental abruption in simulations of vehicle collisions. The 30-week pregnant occupant model was developed with the uterine model including the placenta, uterine-placental interface, fetus, amniotic fluid and surrounding ligaments. A method for evaluating the severity of placental abruption on this pregnant model was established, and the effects of these factors on the severity of the injury were analyzed. As a result, a higher risk of placental abruption was observed in high collision speeds, seatbelt position over the abdomen and anterior-fundal placenta. Lower collision speeds and seatbelt position on the iliac wings prevented severe placental abruption regardless of placental positions. These results suggested that safe driving and keeping seatbelt position on the iliac wings were essential to decrease the severity of this injury. From the analysis of the mechanism for placental abruption, the following hypothesis was proposed: a shear at adhesive sites between the uterus and placenta due to direct seatbelt loading to the uterus.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Accidentes de Tránsito , Placenta , Cinturones de Seguridad , Humanos , Femenino , Embarazo , Desprendimiento Prematuro de la Placenta/etiología , Desprendimiento Prematuro de la Placenta/fisiopatología , Análisis de Elementos Finitos , Conducción de Automóvil , Modelos Biológicos
5.
Chem Sci ; 15(25): 9566-9573, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939146

RESUMEN

Cells are covered with a thick layer of sugar molecules known as glycans. Abnormal glycosylation is a hallmark of cancer, and hypersialylation increases tumor metastasis by promoting immune evasion and inducing tumor cell invasion and migration. Inhibiting sialylation is thus a potential anticancer treatment strategy. However, targeting sialic acids is difficult because of the lack of selective delivery tools. Here, we present a prodrug strategy for selectively releasing the global inhibitor of sialylation peracetylated 3Fax-Neu5Ac (PFN) in cancer cells using the reaction between phenyl azide and endogenous acrolein, which is overproduced in most cancer cells. The prodrug significantly suppressed tumor growth in mice as effectively as PFN without causing kidney dysfunction, which is associated with PFN. The use of sialylated glycans as immune checkpoints is gaining increasing attention, and the proposed method for precisely targeting aberrant sialylation provides a novel avenue for expanding current cancer treatments.

6.
Nat Commun ; 15(1): 3543, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730244

RESUMEN

ß-N-Acetylgalactosamine-containing glycans play essential roles in several biological processes, including cell adhesion, signal transduction, and immune responses. ß-N-Acetylgalactosaminidases hydrolyze ß-N-acetylgalactosamine linkages of various glycoconjugates. However, their biological significance remains ambiguous, primarily because only one type of enzyme, exo-ß-N-acetylgalactosaminidases that specifically act on ß-N-acetylgalactosamine residues, has been documented to date. In this study, we identify four groups distributed among all three domains of life and characterize eight ß-N-acetylgalactosaminidases and ß-N-acetylhexosaminidase through sequence-based screening of deep-sea metagenomes and subsequent searching of public protein databases. Despite low sequence similarity, the crystal structures of these enzymes demonstrate that all enzymes share a prototype structure and have diversified their substrate specificities (oligosaccharide-releasing, oligosaccharide/monosaccharide-releasing, and monosaccharide-releasing) through the accumulation of mutations and insertional amino acid sequences. The diverse ß-N-acetylgalactosaminidases reported in this study could facilitate the comprehension of their structures and functions and present evolutionary pathways for expanding their substrate specificity.


Asunto(s)
Acetilgalactosamina , Glicósido Hidrolasas , Metagenoma , Metagenoma/genética , Especificidad por Sustrato , Acetilgalactosamina/metabolismo , Acetilgalactosamina/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/química , Filogenia , Cristalografía por Rayos X , Secuencia de Aminoácidos , Animales
7.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675593

RESUMEN

Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-ß-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, ß-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.


Asunto(s)
Disacáridos , Fructosa , Glucosa , Sacarosa , Disacáridos/química , Disacáridos/síntesis química , Sacarosa/química , Glicosilación , Edulcorantes/química
8.
ACS Omega ; 9(10): 11969-11975, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497025

RESUMEN

Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and ß-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.

9.
Cureus ; 16(2): e54579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38524076

RESUMEN

Cellulitis, abscess, or both are among the most common skin and soft tissue infections. Typically, cellulitis arises due to bacterial penetration through breaches in the skin's protective barrier. However, in cases of facial cellulitis, it is necessary to consider not only the breakdown of the skin barrier but also to differentiate odontogenic cellulitis. A prompt and accurate diagnosis of facial infections stemming from dental issues, coupled with the administration of antibiotics and dental interventions, played a crucial role in resolving this condition. Odontogenic cellulitis often develops as a result of dental caries. However, we experienced a case of odontogenic cellulitis and skin abscess occurring due to a simple bone cyst in the mandible, even in the absence of dental caries. Proper imaging examinations are crucial for diagnosis.

10.
Chem Commun (Camb) ; 60(24): 3291-3294, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421438

RESUMEN

This study proposes a new method for radionuclide therapy that involves the use of oligomeric 2,6-diisopropylphenyl azides and a chelator to form stable complexes with metallic radionuclides. The technique works by taking advantage of the endogenous acrolein produced by cancer cells. The azides react with the acrolein to give a diazo derivative that immediately attaches to the nearest organelle, effectively anchoring the radionuclide within the tumor. Preliminary in vivo experiments were conducted on a human lung carcinoma xenograft model, demonstrating the feasibility of this approach for cancer treatment.


Asunto(s)
Azidas , Neoplasias , Humanos , Acroleína , Radioisótopos
11.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324037

RESUMEN

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Asunto(s)
Bifidobacterium , Glicósido Hidrolasas , Catálisis , Cisteína
12.
Ecol Evol ; 14(2): e10925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38333092

RESUMEN

The water chestnut Trapa bispinosa Roxb. has been domesticated in China and has been reported as the only domesticated species of this genus. To understand the origin of T. bispinosa and its evolution pathway, we compared the genetic similarity and seed morphology of domesticated water chestnut T. bispinosa with three wild species T. natans, T. incisa, and T. japonica along with archeological seed samples from the Tianluoshan site (approximately 7000-6300 cal BP) in China. The largest seed size was observed only in the domesticated species, whereas other wild species showed smaller size including T. natans L. genetically close to the domesticated type, and T. incisa was the smallest in size. The volumes of the seed capsule and endosperm were measured using X ray CT scans, showing the ratios of total volumes between T. bispinosa and wild species ranged from 4.2 to 4.5. The ratios of endosperm volume ranged from 3.3 to 3.7. Both measurements showed domesticated species have larger seed volume. Genome size was indirectly estimated by flow cytometry. Domesticated species with larger seed size was estimated as diploid, as were the wild species except for tetraploid species T. japonica. Domesticated species clearly showed the largest edible organs, but it was not a result of ploidy level changes. Maternal lineages traced using complete whole chloroplast sequences, suggested that T. natans is the closest to T. bispinosa, both of which are close to T. japonica. The result was confirmed by PCR genotyping with chloroplast insertion/deletion (cpINDEL) markers developed in the study. T. incisa showed distinct plastid types within the species, and T. japonica showed a unique plastid genotype. Our study concludes the largest volumes for the edible endosperm have been accomplished through nearly 6000 years of artificial selection, but the domestication did not involve ploidy level changes.

13.
J Clin Med ; 12(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959327

RESUMEN

p16 overexpression is often used as a surrogate marker for human papillomavirus (HPV) infection in oropharyngeal squamous cell carcinoma but remains an uncertain diagnostic tool for HPV-related sinonasal squamous cell carcinoma (SNSCC). Our study involved 79 consecutive SNSCC patients who were treated at a tertiary referral university hospital during 2006-2021. We retrospectively examined their clinical characteristics and conducted p16 immunohistochemistry and HPV detection. We found that 12.7% of the patients exhibited p16 overexpression, which was significantly more common in the nasal cavity and increased from 2015 onward. The HPV was a high-risk type and viral loads ranged from 4.2 to 1.6 × 106 copies/ng DNA with genome integration. Five-year overall survival (OS) and five-year relapse-free survival (RFS) rates were 74.6% and 69.9%, respectively. Our multivariate analysis showed that T category (T1-4a) and hemoglobin levels (≥13.7) were significant favorable prognostic factors for OS, while T category, performance status, and p16 overexpression were significantly associated with RFS. In patients with p16 overexpression, OS was 100% and RFS was 90%. Our findings suggest that p16 overexpression is a reliable surrogate marker for transcriptionally active HPV infection and predicts a favorable prognosis.

14.
Breed Sci ; 73(3): 269-277, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37840980

RESUMEN

Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset ("core collection") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.

15.
Chem Sci ; 14(40): 11033-11039, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860663

RESUMEN

The direct synthesis of drugs in vivo enables drugs to treat diseases without causing side effects in healthy tissues. Transition-metal reactions have been widely explored for uncaging and synthesizing bioactive drugs in biological environments because of their remarkable reactivity. Nonetheless, it is difficult to develop a promising method to achieve in vivo drug synthesis because blood cells and metabolites deactivate transition-metal catalysts. We report that a robust albumin-based artificial metalloenzyme (ArM) with a low loading (1-5 mol%) can promote Ru-based olefin metathesis to synthesize molecular scaffolds and an antitumor drug in blood. The ArM retained its activity after soaking in blood for 24 h and provided the first example of catalytic olefin cross metathesis in blood. Furthermore, the cyclic-Arg-Gly-Asp (cRGD) peptide-functionalized ArM at lower dosages could still efficiently perform in vivo drug synthesis to inhibit the growth of implanted tumors in mice. Such a system can potentially construct therapeutic drugs in vivo for therapies without side effects.

17.
Nat Commun ; 14(1): 5803, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726269

RESUMEN

The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of D-arabinose, the enantiomer of the typical L-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-D-arabinanases, GH172 exo-α-D-arabinofuranosidase, and GH116 exo-ß-D-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex D-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and ß-D-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these D-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity.


Asunto(s)
Endometriosis , Mycobacterium tuberculosis , Animales , Femenino , Humanos , Galactanos , Lipopolisacáridos , Mamíferos
18.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570614

RESUMEN

Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and ß-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and ß-mannoside, via the 1,2-cis glycosylation pathway and ß-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.


Asunto(s)
Glucanos , Polisacáridos , Glicosilación , Glucanos/química , Glucósidos , Manósidos , Estereoisomerismo
19.
Chem Sci ; 14(30): 8054-8060, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37538829

RESUMEN

Targeted α-particle therapy (TAT) is an attractive alternative to conventional therapy for cancer treatment. Among the available radionuclides considered for TAT, astatine-211 (211At) attached to a cancer-targeting molecule appears very promising. Previously, we demonstrated that aryl azide derivatives could react selectively with the endogenous acrolein generated by cancer cells to give a diazo compound, which subsequently forms a covalent bond with the organelle of cancer cells in vivo. Herein, we synthesized 211At-radiolabeled 2,6-diisopropylphenyl azide (ADIPA), an α-emitting molecule that can selectively target the acrolein of cancer cells, and investigated its antitumor effect. Our results demonstrate that a single intratumor or intravenous administration of this simple α-emitting molecule to the A549 (human lung cancer) cell-bearing xenograft mouse model, at a low dose (70 kBq), could suppress tumor growth without inducing adverse effects. Furthermore, because acrolein is generally overproduced by most cancer cells, we believe ADIPA is a simple TAT compound that deserves further investigation for application in animal models and humans with various cancer types and stages.

20.
Breed Sci ; 73(2): 219-229, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37404344

RESUMEN

To uncover population structure, phylogenetic relationship, and diversity in melons along the famous Silk Road, a seed size measurement and a phylogenetic analysis using five chloroplast genome markers, 17 RAPD markers and 11 SSR markers were conducted for 87 Kazakh melon accessions with reference accessions. Kazakh melon accessions had large seed with exception of two accessions of weedy melon, Group Agrestis, and consisted of three cytoplasm types, of which Ib-1/-2 and Ib-3 were dominant in Kazakhstan and nearby areas such as northwestern China, Central Asia and Russia. Molecular phylogeny showed that two unique genetic groups, STIa-2 with Ib-1/-2 cytoplasm and STIa-1 with Ib-3 cytoplasm, and one admixed group, STIAD combined with STIa and STIb, were prevalent across all Kazakh melon groups. STIAD melons that phylogenetically overlapped with STIa-1 and STIa-2 melons were frequent in the eastern Silk Road region, including Kazakhstan. Evidently, a small population contributed to melon development and variation in the eastern Silk Road. Conscious preservation of fruit traits specific to Kazakh melon groups is thought to play a role in the conservation of Kazakh melon genetic variation during melon production, where hybrid progenies were generated through open pollination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA