Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
iScience ; 27(5): 109560, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638564

RESUMEN

The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.

2.
Transl Androl Urol ; 13(1): 80-90, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38404555

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic has been a global health crisis and continues to pose risk to population health at the present. Vaccination against this disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a public health priority worldwide. Yet, limited information is available on the potential impact of such vaccines on human fertility. Methods: To examine the relationship between COVID-19 vaccination and male fertility, we conducted an observational study on sperm donor candidates in China who received Chinese COVID-19 vaccines between January 1, 2020 to December 31, 2021. Results: A total of 2,955 semen samples from 564 individuals were assessed along with vaccination information. Statistical analyses were conducted on both the entire study population and the subgroup of individuals who provided repeated semen samples before and after vaccination. While motility related parameters [progressive rate, curvilinear velocity (VCL), average path velocity (VAP), straight-line velocity (VSL), wobble (WOB), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF)] exhibited statistically significant difference before and after vaccination based on Welch two-sample test, mixed effects regression results based on repeated measures from the same individuals indicated that vaccination was not statistically associated with sperm quality parameters except for VCL, VAP, and VSL. Individual variability was the key determinant of sperm quality variance, with contribution ranging from 19% to 82%. Conclusions: Findings from our study could help to enhance current understanding of male reproductive health in the context of the global pandemic.

3.
Theor Appl Genet ; 136(9): 183, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555965

RESUMEN

KEY MESSAGE: The transcription factor StDL1 regulates dissected leaf formation in potato and the genotype frequency of recessive Stdl1/Stdl1, which results in non-dissected leaves, has increased in cultivated potatoes. Leaf morphology is a key trait of plants, influencing plant architecture, photosynthetic efficiency and yield. Potato (Solanum tuberosum L.), the third most important food crop worldwide, has a diverse leaf morphology. However, despite the recent identification of several genes regulating leaf formation in other plants, few genes involved in potato leaf development have been reported. In this study, we identified an R2R3 MYB transcription factor, Dissected Leaf 1 (StDL1), regulating dissected leaf formation in potato. A naturally occurring allele of this gene, Stdl1, confers non-dissected leaves in young seedlings. Knockout of StDL1 in a diploid potato changes the leaf morphology from dissected to non-dissected. Experiments in N. benthamiana and yeast show that StDL1 is a transcriptional activator. Notably, by calculating the genotype frequency of the Stdl1/Stdl1 in 373-potato accessions, we found that it increases significantly in cultivated potatoes. This work reveals the genetic basis of dissected leaf formation in potato and provides insights into plant leaf morphology.


Asunto(s)
Solanum tuberosum , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fotosíntesis , Fenotipo
4.
aBIOTECH ; 3(3): 163-168, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36304841

RESUMEN

Reinventing the tetraploid potato into a seed-propagated, diploid, hybrid potato would significantly accelerate potato breeding. In this regard, the development of highly homozygous inbred lines is a prerequisite for breeding hybrid potatoes, but self-incompatibility and inbreeding depression present challenges for developing pure inbred lines. To resolve this impediment, we developed a doubled haploid (DH) technology, based on mutagenesis of the potato DOMAIN OF UNKNOWN FUNCTION 679 membrane protein (StDMP) gene. Here, we show that a deficiency in StDMP allows the generation of maternal haploids for generating diploid potato lines. An exercisable protocol, involving hybridization, fluorescent marker screening, molecular and flow cytometric identification, and doubling with colchicine generates nearly 100% homozygous diploid potato lines. This dmp-triggered haploid induction (HI) system greatly shortens the breeding process and offers a robust method for generating diploid potato inbred lines with high purity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00080-7.

6.
Nature ; 606(7914): 535-541, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676481

RESUMEN

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Asunto(s)
Productos Agrícolas , Evolución Molecular , Genoma de Planta , Solanum tuberosum , Productos Agrícolas/genética , Genoma de Planta/genética , Fitomejoramiento , Tubérculos de la Planta/genética , Solanum tuberosum/genética
7.
ACS Appl Mater Interfaces ; 14(1): 1929-1939, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34964343

RESUMEN

Soft actuators with apparent uniqueness in exhibiting complex shape morphing are highly desirable for artificial intelligence applications. However, for the majority of soft actuators, in general, it is challenging to achieve versatility, durability, and configurability simultaneously. Enormous works are devoted to meet the multifunctional smart actuators, to little effect. Herein, self-healing and bio-mimetic smart actuators are proposed based on azobenzene chromophores and dynamic disulfide bonds. Benefiting from the dynamic and drivable vitrimer liquid crystal elastomer (V-LCE) materials, a series of actuators with single or compound dynamic three-dimensional structures were fabricated, which were capable of double-stimuli response and complex "bionic" motions, such as the blooming of a flower, grasping and loosening an object, and so forth. Moreover, these flexible actuators showed fascinating properties, such as high robustness, excellent elasticity-plasticity shape-memory properties (Rf and Rr are close to 100%), easily reconfigurable property, and self-healing. This smart V-LCE provides a guideline to design and fabricate soft versatility actuators, which has prospects for developing smart bionic and artificial intelligence devices.

8.
Nat Commun ; 12(1): 4142, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230469

RESUMEN

Potato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.


Asunto(s)
Diploidia , Proteínas F-Box/genética , Genes de Plantas , Proteínas de Plantas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/genética , Flores/genética , Filogenia , Fitomejoramiento , Plantas Modificadas Genéticamente , Ribonucleasas/genética , Semillas
9.
Cell ; 184(15): 3873-3883.e12, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171306

RESUMEN

Reinventing potato from a clonally propagated tetraploid into a seed-propagated diploid, hybrid potato, is an important innovation in agriculture. Due to deleterious mutations, it has remained a challenge to develop highly homozygous inbred lines, a prerequisite to breed hybrid potato. Here, we employed genome design to develop a generation of pure and fertile potato lines and thereby the uniform, vigorous F1s. The metrics we applied in genome design included the percentage of genome homozygosity and the number of deleterious mutations in the starting material, the number of segregation distortions in the S1 population, the haplotype information to infer the break of tight linkage between beneficial and deleterious alleles, and the genome complementarity of the parental lines. This study transforms potato breeding from a slow, non-accumulative mode into a fast-iterative one, thereby potentiating a broad spectrum of benefits to farmers and consumers.


Asunto(s)
Genoma de Planta , Hibridación Genética , Solanum tuberosum/genética , Cruzamientos Genéticos , Diploidia , Fertilidad/genética , Genes de Plantas , Variación Genética , Genética de Población , Heterocigoto , Homocigoto , Vigor Híbrido/genética , Mutación/genética , Linaje , Fitomejoramiento , Análisis de Componente Principal , Selección Genética
10.
Nat Genet ; 52(10): 1018-1023, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989320

RESUMEN

Potato (Solanum tuberosum L.) is the most important tuber crop worldwide. Efforts are underway to transform the crop from a clonally propagated tetraploid into a seed-propagated, inbred-line-based hybrid, but this process requires a better understanding of potato genome. Here, we report the 1.67-Gb haplotype-resolved assembly of a diploid potato, RH89-039-16, using a combination of multiple sequencing strategies, including circular consensus sequencing. Comparison of the two haplotypes revealed ~2.1% intragenomic diversity, including 22,134 predicted deleterious mutations in 10,642 annotated genes. In 20,583 pairs of allelic genes, 16.6% and 30.8% exhibited differential expression and methylation between alleles, respectively. Deleterious mutations and differentially expressed alleles were dispersed throughout both haplotypes, complicating strategies to eradicate deleterious alleles or stack beneficial alleles via meiotic recombination. This study offers a holistic view of the genome organization of a clonally propagated diploid species and provides insights into technological evolution in resolving complex genomes.


Asunto(s)
Genoma de Planta/genética , Haplotipos/genética , Anotación de Secuencia Molecular , Solanum tuberosum/genética , Alelos , Diploidia , Heterocigoto , Tetraploidía
11.
Theor Appl Genet ; 133(4): 1123-1131, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31970451

RESUMEN

KEY MESSAGE: The yellow margin (ym) gene was mapped to a 30-kb genomic region in potato and the mutation of a pectate lyase gene led to this phenotype. The practice of clonally propagating potato (Solanum tuberosum L.), which has been lasted for thousands of years, has caused the accumulation of deleterious alleles. Despite yellow margin (ym) being a common cause of a detrimental weak-vigor phenotype and reduced yield in diploid potato, the underlying gene has eluded discovery to date. In this paper, we mapped the ym gene to a 30-kb region containing four annotated genes. Among them, PGSC0003DMG402023481 encodes a pectate lyase-like gene (StPLL) with lower expression in ym plants than in the wild-type plants. PCR amplification confirmed a 4.1-kb deletion in the mutant allele of StPLL. Knockout of StPLL in diploid potato resulted in a similar phenotype with the ym plants. This study not only characterizes the ym allele but also provides the molecular tools to select and purge it from populations, while also deepening our understanding of the morphogenesis in potato.


Asunto(s)
Genes de Plantas , Mutación/genética , Polisacárido Liasas/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Secuencia de Bases , Diploidia , Estudios de Asociación Genética , Patrón de Herencia/genética , Fenotipo , Mapeo Físico de Cromosoma , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura
12.
Nat Genet ; 51(3): 374-378, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30643248

RESUMEN

Inbreeding depression confers reduced fitness among the offspring of genetic relatives. As a clonally propagated crop, potato (Solanum tuberosum L.) suffers from severe inbreeding depression; however, the genetic basis of inbreeding depression in potato is largely unknown. To gain insight into inbreeding depression in potato, we evaluated the mutation burden in 151 diploid potatoes and obtained 344,831 predicted deleterious substitutions. The deleterious mutations in potato are enriched in the pericentromeric regions and are line specific. Using three F2 populations, we identified 15 genomic regions with severe segregation distortions due to selection at the gametic and zygotic stages. Most of the deleterious recessive alleles affecting survival and growth vigor were located in regions with high recombination rates. One of these deleterious alleles is derived from a rare mutation that disrupts a gene required for embryo development. This study provides the basis for genome design of potato inbred lines.


Asunto(s)
Genoma de Planta/genética , Depresión Endogámica/genética , Solanum tuberosum/genética , Alelos , Diploidia , Genómica/métodos , Genotipo , Mutación/genética , Fitomejoramiento/métodos
13.
J Integr Plant Biol ; 61(1): 7-11, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474354

RESUMEN

Potatoes (Solanum tuberosum L.) represent an important tuber crop, worldwide. During its prolonged clonal propagation, numerous deleterious mutations have accumulated in the potato genome, leading to severe inbreeding depression; however, the shaping of this mutation burden during polyploidization and improvement is largely unknown. Here, we sequenced 20 diploid landraces of the Stenotomum group, eight tetraploid landraces, and 20 tetraploid modern cultivars, to analyze variations in their deleterious mutations. We show that deleterious mutations accumulated rapidly during the polyploidization of tetraploid potatoes. This study provides a foundation for future potato improvement.


Asunto(s)
Solanum tuberosum/genética , Diploidia , Mutación/genética , Tetraploidía
14.
Nat Plants ; 4(9): 651-654, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104651

RESUMEN

Re-domestication of potato into an inbred line-based diploid crop propagated by seed represents a promising alternative to traditional clonal propagation of tetraploid potato, but self-incompatibility has hindered the development of inbred lines. To address this problem, we created self-compatible diploid potatoes by knocking out the self-incompatibility gene S-RNase using the CRISPR-Cas9 system. This strategy opens new avenues for diploid potato breeding and will also be useful for studying other self-incompatible crops.


Asunto(s)
Diploidia , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Plantas/genética , Polinización , Ribonucleasas/genética , Autofecundación , Solanum tuberosum/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Polinización/genética , Polinización/fisiología , Reacción en Cadena de la Polimerasa , Ribonucleasas/fisiología , Autofecundación/genética , Autofecundación/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Solanum tuberosum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA