Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Plant J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943629

RESUMEN

Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.

2.
Carbohydr Polym ; 340: 122303, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858024

RESUMEN

The objective of this work was to study the effects of heat-moisture treatment (HMT) of freshly harvested mature high-amylose maize (HAM) kernels on its starch structure, properties, and digestibility. Freshly harvested HAM kernels were sealed in Pyrex glass bottles and treated at 80 °C, 100 °C, or 120 °C. HMT of HAM kernels had no impact on its starch X-ray diffraction pattern but increased the relative crystallinity. This result together with the increased starch gelatinization temperatures and enthalpy change indicated starch molecules reorganization forming long-chain double-helical crystalline structure during HMT of HAM kernels. The aggregation of starch granules were observed after HMT, indicating interaction of starch granules and other components. This interaction and the high-temperature crystalline structure led to reductions in the starch digestibility, swelling power, solubility, and pasting viscosity of the HAM flours. Some starch granules remained intact and showed strong birefringence after the HAM flours were precooked at 100 °C for 20 min and followed by enzymatic hydrolysis, and the amount of undigested starch granules increased with increasing HMT temperatures. This result further supported that HMT of HAM kernels with high moisture level could increase the starch thermal stability and enzymatic resistance.


Asunto(s)
Amilosa , Calor , Almidón , Zea mays , Zea mays/química , Amilosa/química , Almidón/química , Hidrólisis , Viscosidad , Solubilidad , Agua/química , Difracción de Rayos X , Harina/análisis
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928499

RESUMEN

Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , MicroARNs/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Silenciamiento del Gen
4.
Micromachines (Basel) ; 15(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38793199

RESUMEN

White organic light-emitting diodes (WOLEDs) hold vast prospects in the fields of next-generation displays and solid-state lighting. Ultrathin emitting layers (UEMLs) have become a research hotspot because of their unique advantage. On the basis of simplifying the device structure and preparation process, they can achieve electroluminescent performance comparable to that of doped devices. In this review, we first discuss the working principles and advantages of WOLEDs based on UEML architecture, which can achieve low cost and more flexibility by simplifying the device structure and preparation process. Subsequently, the successful applications of doping and non-doping technologies in fluorescent, phosphorescent, and hybrid WOLEDs combined with UEMLs are discussed, and the operation mechanisms of these WOLEDs are emphasized briefly. We firmly believe that this article will bring new hope for the development of UEML-based WOLEDs in the future.

5.
Opt Lett ; 49(8): 1928, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621042

RESUMEN

This publisher's note contains a correction to Opt. Lett.48, 5771 (2023)10.1364/OL.506371.

6.
Nat Commun ; 15(1): 2028, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459051

RESUMEN

Copine proteins are highly conserved and ubiquitously found in eukaryotes, and their indispensable roles in different species were proposed. However, their exact function remains unclear. The phytohormone brassinosteroids (BRs) play vital roles in plant growth, development and environmental responses. A key event in effective BR signaling is the formation of functional BRI1-SERK receptor complex and subsequent transphosphorylation upon ligand binding. Here, we demonstrate that BONZAI (BON) proteins, which are plasma membrane-associated copine proteins, are critical components of BR signaling in both the monocot maize and the dicot Arabidopsis. Biochemical and molecular analyses reveal that BON proteins directly interact with SERK kinases, thereby ensuring effective BRI1-SERK interaction and transphosphorylation. This study advances the knowledge on BR signaling and provides an important target for optimizing valuable agronomic traits, it also opens a way to study steroid hormone signaling and copine proteins of eukaryotes in a broader perspective.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Portadoras , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo
7.
Adv Sci (Weinh) ; 11(20): e2400916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520733

RESUMEN

The rigid hull encasing Tartary buckwheat seeds necessitates a laborious dehulling process before flour milling, resulting in considerable nutrient loss. Investigation of lignin composition is pivotal in understanding the structural properties of tartary buckwheat seeds hulls, as lignin is key determinant of rigidity in plant cell walls, thus directly impacting the dehulling process. Here, the lignin composition of seed hulls from 274 Tartary buckwheat accessions is analyzed, unveiling a unique lignin chemotype primarily consisting of G lignin, a common feature in gymnosperms. Furthermore, the hardness of the seed hull showed a strong negative correlation with the S lignin content. Genome-wide detection of selective sweeps uncovered that genes governing the biosynthesis of S lignin, specifically two caffeic acid O-methyltransferases (COMTs) and one ferulate 5-hydroxylases, are selected during domestication. This likely contributed to the increased S lignin content and decreased hardness of seed hulls from more domesticated varieties. Genome-wide association studies identified robust associations between FtCOMT1 and the accumulation of S lignin in seed hull. Transgenic Arabidopsis comt1 plants expressing FtCOMT1 successfully reinstated S lignin content, confirming its conserved function across plant species. These findings provide valuable metabolic and genetic insights for the potential redesign of Tartary buckwheat seed hulls.


Asunto(s)
Fagopyrum , Lignina , Semillas , Lignina/metabolismo , Lignina/genética , Fagopyrum/genética , Fagopyrum/metabolismo , Semillas/genética , Semillas/metabolismo , Metiltransferasas
8.
Plant Dis ; 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311792

RESUMEN

Maize is the largest crop planted in China. Nine species of cyst nematodes have been reported to affect maize production. Heterodera zeae, H. avenae and Punctodera chalcoensis can cause significant maize yield losses annually (Luc et al. 2005). In 1971, the maize cyst nematode H. zeae was first detected in Rajasthan, India (Koshy et al. 1971). Subsequently, it has been reported in many other countries such as the United States, Greece, Pakistan, and Egypt. In China, H. zeae was first identified in the maize fields of Laibin City, Guangxi Zhuang Autonomous Region (Wu et al., 2017). Cui et al. (2020) identified H. zeae in a maize field of Yuzhou City, Henan Province of Central China in 2018. From 2018 to 2022, a survey of cyst-forming nematodes was conducted in Southwest China. Fifteen soil samples of about 500 g each were collected from Luding County, Ganzi Prefecture of Sichuan Province. No major aboveground symptoms were shown on maize, but a few females were observed on the roots of maize in one field. The cysts and second-stage juveniles (J2s) were collected from each soil sample using Cobb's screening gravity method. A total of 8.50±2.0 cysts per 100 ml of soil on the average were observed in the field. A thin subcrystalline layer was discernible only in young cysts. Morphological and molecular studies of cysts and J2s indicated that the nematodes were identified to be H. zeae in a maize-field. Morphologically, the cysts were in a lemon shape, light brown or pearly white in color. The vulval cone was prominent. Fenestra ambifenestrate, and semifenestra were separated by a fairly wide vulval bridge, fenestral length and width were variable, and the cyst wall was shown in a zigzag pattern. The J2s' body was in a vermiform, tapering at both ends, with a hyaline tail. Stylet was strongly developed with round or slightly anteriorly directed knobs. Morphological measurements of the cysts (n = 9) determined that the mean body length was 417.2 µm (403.6 to 439.4 µm), body width was 429.7 µm (397.6 to 456.9µm); length-width ratio was 1.4 (0.75 to 3); fenestra length was 525.3 µm (498.5 to 570.7 µm); and the mean semifenestra width was 458.6 µm (403.6 to 546.3 µm). Morphometric measurements of second-stage juveniles (n = 20) showed a body length of 419.7µm (355.8 to 492.5 µm); a stylet length of 20.8 µm (19.51 to 23.3µm); a tail length of 41.5 µm (20 to 49.4 µm); and a hyaline tail length of 20.7 µm (16.6 to 24 µm). The main morphological characteristics and measured values were basically consistent with those described by Cui et al. (2022), and all of which were similar to those of H. zeae. Amplification of DNA from random single cysts (n = 5) was conducted using the protocol described by Cui et al. (2022). The rDNA-internal transcribed spacer (ITS) was amplified and sequenced using a pair of universal primers TW81 (5'-GTTTCCGTAGGTGAA CCTGC-3') and AB28 (5'-ATATGCTTAAGTTCAGCGGGT-3'). The ITS sequences were deposited at GenBank with the accession number OR811029.1. Alignments of sequences showed an identity of 98% with H. zeae sequences from China (OP692769.2, MW785772.1) and the USA (GU145616.1), which were confirmed using a pair of species-specific primers HzF1 (5'-GGGGAGGTGAATGTGGG-3') and HzR1 (5'-CCTTTGGCAATCGGTGA-3') of H. zeae with a targeted PCR fragment of 393 bp (Cui et al. 2022). Pathogenicity was conducted and confirmed by infection and reproduction on maize. Seeds (cv. Zhengda 619) were sown in three pots that contained 150 ml of a sterile soil mixture (loamy soil: sand=1:1), and 5 cysts (103 eggs/cyst on the average) were inoculated in each pot at 25/30°C, under a 12-h dark/12-h light condition (Cui et al. 2023). Fifteen days after sowing, third- and fourth-stage juveniles were observed in the rootstained with acid fuchsin, and a total of 32 cysts per maize plant on the average were collected at 40 days after sowing. The new cysts' morphological and molecular characteristics were identical to the cysts from the original soil samples. To the best of our knowledge, this is the first report of H. zeae as a pathogen on maize in Sichuan Province, Southwest China. Our findings will be useful for management and further research of maize cyst nematodes.

9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339196

RESUMEN

Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling intricate genotype-phenotype association across various species. Maize (Zea mays L.), renowned for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous genetic loci and potential genes associated with complex traits, including responses to both abiotic and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis of these traits becomes paramount. This review delves into current and future prospectives aimed at yield, quality, and environmental stress resilience in maize and also addresses the challenges encountered during genomic selection and molecular breeding, all facilitated by the utilization of GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively, these insights not only advance our understanding of the genetic mechanism regulating complex traits but also propel the utilization of marker-assisted selection in maize molecular breeding programs, where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the genetic mechanism underlying complex traits in maize and enhancing breeding strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Sitios de Carácter Cuantitativo , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
10.
Genes (Basel) ; 15(2)2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397246

RESUMEN

Mercury (Hg) pollution not only poses a threat to the environment but also adversely affects the growth and development of plants, with potential repercussions for animals and humans through bioaccumulation in the food chain. Maize, a crucial source of food, industrial materials, and livestock feed, requires special attention in understanding the genetic factors influencing mercury accumulation. Developing maize varieties with low mercury accumulation is vital for both maize production and human health. In this study, a comprehensive genome-wide association study (GWAS) was conducted using an enlarged SNP panel comprising 1.25 million single nucleotide polymorphisms (SNPs) in 230 maize inbred lines across three environments. The analysis identified 111 significant SNPs within 78 quantitative trait loci (QTL), involving 169 candidate genes under the Q model. Compared to the previous study, the increased marker density and optimized statistical model led to the discovery of 74 additional QTL, demonstrating improved statistical power. Gene ontology (GO) enrichment analysis revealed that most genes participate in arsenate reduction and stress responses. Notably, GRMZM2G440968, which has been reported in previous studies, is associated with the significant SNP chr6.S_155668107 in axis tissue. It encodes a cysteine proteinase inhibitor, implying its potential role in mitigating mercury toxicity by inhibiting cysteine. Haplotype analyses provided further insights, indicating that lines carrying hap3 exhibited the lowest mercury content compared to other haplotypes. In summary, our study significantly enhances the statistical power of GWAS, identifying additional genes related to mercury accumulation and metabolism. These findings offer valuable insights into unraveling the genetic basis of mercury content in maize and contribute to the development of maize varieties with low mercury accumulation.


Asunto(s)
Mercurio , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico , Zea mays/genética , Zea mays/metabolismo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Mercurio/toxicidad , Mercurio/metabolismo , Fenotipo
11.
Plant Physiol ; 194(4): 2616-2630, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38206190

RESUMEN

The plant cuticle is essential in plant defense against biotic and abiotic stresses. To systematically elucidate the genetic architecture of maize (Zea mays L.) cuticular wax metabolism, 2 cuticular wax-related traits, the chlorophyll extraction rate (CER) and water loss rate (WLR) of 389 maize inbred lines, were investigated and a genome-wide association study (GWAS) was performed using 1.25 million single nucleotide polymorphisms (SNPs). In total, 57 nonredundant quantitative trait loci (QTL) explaining 5.57% to 15.07% of the phenotypic variation for each QTL were identified. These QTLs contained 183 genes, among which 21 strong candidates were identified based on functional annotations and previous publications. Remarkably, 3 candidate genes that express differentially during cuticle development encode ß-ketoacyl-CoA synthase (KCS). While ZmKCS19 was known to be involved in cuticle wax metabolism, ZmKCS12 and ZmKCS3 functions were not reported. The association between ZmKCS12 and WLR was confirmed by resequencing 106 inbred lines, and the variation of WLR was significant between different haplotypes of ZmKCS12. In this study, the loss-of-function mutant of ZmKCS12 exhibited wrinkled leaf morphology, altered wax crystal morphology, and decreased C32 wax monomer levels, causing an increased WLR and sensitivity to drought. These results confirm that ZmKCS12 plays a vital role in maize C32 wax monomer synthesis and is critical for drought tolerance. In sum, through GWAS of 2 cuticular wax-associated traits, this study reveals comprehensively the genetic architecture in maize cuticular wax metabolism and provides a valuable reference for the genetic improvement of stress tolerance in maize.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sitios de Carácter Cuantitativo/genética , Fenotipo , Agua/metabolismo , Hojas de la Planta/genética
12.
Plant Biotechnol J ; 22(5): 1269-1281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38073308

RESUMEN

A fast evolution within mitochondria genome(s) often generates discords between nuclear and mitochondria, which is manifested as cytoplasmic male sterility (CMS) and fertility restoration (Rf) system. The maize CMS-C trait is regulated by the chimeric mitochondrial gene, atp6c, and can be recovered by the restorer gene ZmRf5. Through positional cloning in this study, we identified the nuclear restorer gene, ZmRf5, which encodes a P-type pentatricopeptide repeat (PPR) family protein. The over-expression of ZmRf5 brought back the fertility to CMS-C plants, whereas its genomic editing by CRISPR/Cas9 induced abortive pollens in the restorer line. ZmRF5 is sorted to mitochondria, and recruited RS31A, a splicing factor, through MORF8 to form a cleaving/restoring complex, which promoted the cleaving of the CMS-associated transcripts atp6c by shifting the major cleavage site from 480th nt to 344 th nt for fast degradation, and preserved just right amount of atp6c RNA for protein translation, providing adequate ATP6C to assembly complex V, thus restoring male fertility. Interestingly, ATP6C in the sterile line CMo17A, with similar cytology and physiology changes to YU87-1A, was accumulated much less than it in NMo17B, exhibiting a contrary trend in the YU87-1 nuclear genome previously reported, and was restored to normal level in the presence of ZmRF5. Collectively these findings unveil a new molecular mechanism underlying fertility restoration by which ZmRF5 cooperates with MORF8 and RS31A to restore CMS-C fertility in maize, complemented and perfected the sterility mechanism, and enrich the perspectives on communications between nucleus and mitochondria.


Asunto(s)
Fertilidad , Zea mays , Zea mays/genética , Factores de Empalme de ARN , Citoplasma/genética , Fertilidad/genética , Mitocondrias/genética , Infertilidad Vegetal/genética
13.
Theor Appl Genet ; 137(1): 7, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093101

RESUMEN

KEY MESSAGE: A novel light-dependent dominant lesion mimic mutant with enhanced multiple disease resistance was physiologically, biochemically, and genetically characterized; the causal gene was fine mapped to a 909 kb interval containing 38 genes. Identification of genes that confer multiple disease resistance (MDR) is crucial for the improvement of maize disease resistance. However, very limited genes are identified as MDR genes in maize. In this study, we characterized a dominant disease lesion mimics 8 (Les8) mutant that had chlorotic lesions on the leaves and showed enhanced resistance to both curvularia leaf spot and southern leaf blight. Major agronomic traits were not obviously altered, while decreased chlorophyll content was observed in the mutant, and the genetic effect of the Les8 mutation was stable in different genetic backgrounds. By BSR-seq analysis and map-based cloning, the LES8 gene was mapped into a 909 kb region containing 38 candidate genes on chromosome 9 wherein no lesion mimic or disease-resistance genes were previously reported. Using transcriptomics analysis, we found that genes involved in defense responses and secondary metabolite biosynthesis were enriched in the significantly up-regulated genes, while genes involved in photosynthesis and carbohydrate-related pathways were enriched in the significantly down-regulated genes in Les8. In addition, there was an overaccumulation of jasmonic acid and lignin but not salicylic acid in Les8. Taken together, this study revealed candidate genes and potential mechanism underlying Les8-conferred MDR in maize.


Asunto(s)
Curvularia , Zea mays , Mapeo Cromosómico , Curvularia/genética , Zea mays/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Hojas de la Planta/genética , Enfermedades de las Plantas/genética
14.
Science ; 382(6675): 1159-1165, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38060668

RESUMEN

Iron (Fe) deficiency remains widespread among people in developing countries. To help solve this problem, breeders have been attempting to develop maize cultivars with high yields and high Fe concentrations in the kernels. We conducted a genome-wide association study and identified a gene, ZmNAC78 (NAM/ATAF/CUC DOMAIN TRANSCRIPTION FACTOR 78), that regulates Fe concentrations in maize kernels. We cultivated maize varieties with both high yield and high Fe concentrations in their kernels by using a molecular marker developed from a 42-base pair insertion or deletion (indel) in the promoter of ZmNAC78. ZmNAC78 expression is enriched in the basal endosperm transfer layer of kernels, and the ZmNAC78 protein directly regulates messenger RNA abundance of Fe transporters. Our results thus provide an approach to develop maize varieties with Fe-enriched kernels.


Asunto(s)
Biofortificación , Productos Agrícolas , Hierro , Proteínas de Plantas , Zea mays , Estudio de Asociación del Genoma Completo , Hierro/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139299

RESUMEN

The kernel serves as the storage organ and harvestable component of maize, and it plays a crucial role in determining crop yield and quality. Understanding the molecular and genetic mechanisms of kernel development is of considerable importance for maize production. In this study, we obtained a mutant, which we designated defective kernel 407 (dek407), through ethyl methanesulfonate mutagenesis. The dek407 mutant exhibited reduced kernel size and kernel weight, as well as delayed grain filling compared with those of the wild type. Positional cloning and an allelism test revealed that Dek407 encodes a nitrate transporter 1/peptide transporter family (NPF) protein and is the allele of miniature 2 (mn2) that was responsible for a poorly filled defective kernel phenotype. A transcriptome analysis of the developing kernels showed that the mutation of Dek407 altered the expression of phytohormone-related genes, especially those genes associated with indole-3-acetic acid synthesis and signaling. Phytohormone measurements and analysis indicated that the endogenous indole-3-acetic acid content was significantly reduced by 66% in the dek407 kernels, which may be the primary cause of the defective phenotype. We further demonstrated that natural variation in Dek407 is associated with kernel weight and kernel size. Therefore, Dek407 is a potential target gene for improvement of maize yield.


Asunto(s)
Transportadores de Nitrato , Zea mays , Zea mays/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Grano Comestible/genética , Perfilación de la Expresión Génica
16.
Mol Breed ; 43(12): 91, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099287

RESUMEN

Starch is a major component of cereals, comprising over 70% of dry weight. It serves as a primary carbon source for humans and animals. In addition, starch is an indispensable industrial raw material. While maize (Zea mays) is a key crop and the primary source of starch, the genetic basis for starch content in maize kernels remains poorly understood. In this study, using an enlarged panel, we conducted a genome-wide association study (GWAS) based on best linear unbiased prediction (BLUP) value for starch content of 261 inbred lines across three environments. Compared with previous study, we identified 14 additional significant quantitative trait loci (QTL), encompassed a total of 42 genes, and indicated that increased marker density contributes to improved statistical power. By integrating gene expression profiling, Gene Ontology (GO) enrichment and haplotype analysis, several potential target genes that may play a role in regulating starch content in maize kernels have been identified. Notably, we found that ZmAPC4, associated with the significant SNP chr4.S_175584318, which encodes a WD40 repeat-like superfamily protein and is highly expressed in maize endosperm, might be a crucial regulator of maize kernel starch synthesis. Out of the 261 inbred lines analyzed, they were categorized into four haplotypes. Remarkably, it was observed that the inbred lines harboring hap4 demonstrated the highest starch content compared to the other haplotypes. Additionally, as a significant achievement, we have developed molecular markers that effectively differentiate maize inbred lines based on their starch content. Overall, our study provides valuable insights into the genetic basis of starch content and the molecular markers can be useful in breeding programs aimed at developing maize varieties with high starch content, thereby improving breeding efficiency. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01437-6.

17.
Opt Lett ; 48(21): 5771-5774, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910755

RESUMEN

A bimolecular excited system is considered as a promising candidate for developing white organic light-emitting diodes (WOLEDs) with reduced phosphorescent components. However, for actualizing high-performance WOLED, little attention has been paid to electromers compared to exciplexes. Herein, we construct the bimolecular excited system to prepare fluorescent WOLEDs by combining the electromer emission with the exciplex emission, achieving a maximum power efficiency of 11.8 lm/W with a color rendering index (CRI) of over 80. Furthermore, phosphorescent dopants are doped into an exciplex host to construct hybrid WOLEDs. The fabricated complementary-color and three-color devices achieve maximum efficiencies of 55.3 cd/A (46.8 lm/W) and 34.1 cd/A (26.8 lm/W), respectively. The spectral coverages of WOLEDs are broadened by the bimolecular excited system, and CRIs are further improved at high luminance. Our strategy may bring light to the future development of highly efficient WOLEDs with economy and sustainability.

18.
Molecules ; 28(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894507

RESUMEN

Interfacial exciplex has recently been adopted as an effective host to achieve phosphorescent organic light-emitting diodes (OLEDs) with high efficiencies and low driving voltages. However, a systematic understanding of exciton recombination behavior in either host of interfacial exciplex is still deficient. Herein, the strategic design rule of interfacial exciplex host is proposed to overcome the negative effects of direct trapping recombination by systematically investigating exciton recombination behavior in interfacial exciplex hosts. As a result, blue and orange phosphorescent devices acquire peak external quantum efficiencies of 23.5% and 29.2% with low turn-on voltages. These results provide a simple method to realize highly efficient OLEDs aiming for general lighting and display applications.

19.
Plant Commun ; 4(6): 100682, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691288

RESUMEN

Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Calor , Lignina/química , Lignina/genética , Lignina/metabolismo , Polen/genética , Polen/metabolismo , Rayos Ultravioleta , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Plant Physiol ; 193(4): 2430-2441, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590954

RESUMEN

Endosperm cell number is critical in determining grain size in maize (Zea mays). Here, zma-miR159 overexpression led to enlarged grains in independent transgenic lines, suggesting that zma-miR159 contributes positively to maize grain size. Targeting of ZmMYB74 and ZmMYB138 transcription factor genes by zma-miR159 was validated using 5' RACE and dual-luciferase assay. Lines in which ZmMYB74 was knocked out using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) presented a similar enlarged grain phenotype as those with zma-miR159 overexpression. Downstream genes regulating cell division were identified through DNA affinity purification sequencing using ZmMYB74 and ZmMYB138. Our results suggest that zma-miR159-ZmMYB modules act as an endosperm development hub, participating in the division and proliferation of endosperm cells.


Asunto(s)
Factores de Transcripción , Zea mays , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA