Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38485099

RESUMEN

PURPOSE: Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS: Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS: The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS: The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.

2.
Int Immunopharmacol ; 129: 111637, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38335653

RESUMEN

The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.


Asunto(s)
Cumarinas , Intestinos , Ratones , Humanos , Animales , Cumarinas/farmacología , Cumarinas/uso terapéutico , Antioxidantes , Radiación Ionizante
3.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4761-4773, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802815

RESUMEN

The potential anti-stroke active components in Taohong Siwu Decoction(THSWD) were identified by target cell trapping coupled with ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of active components in THSWD in the treatment of ischemic stroke(IS) was explored by network pharmacology, molecular docking, and experimental validation. The UPLC-Q-TOF-MS technology combined with the UNIFI data analysis platform was used to analyze the composition of the cellular fragmentation fluid after co-incubation of THSWD with target cells. The targets of potential active components and IS were collected by network pharmacology, and the common targets underwent protein-protein interaction(PPI), Gene Ontology(GO), and Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analyses. The target cell trapping component-core target-signaling pathway network was constructed, and the active components were molecularly docked to the top targets in the PPI network, followed by pharmacodynamic validation in vitro. Fifteen active components were identified in the target cellular fragmentation fluid, including bicyclic monoterpenes, cyanoglycosides, flavonols, quinoid chalcones, phenylpropanoids, and tannins. As revealed by the analysis of network pharmacology, THSWD presumably regulated PI3K-AKT, FoxO, MAPK, Jak-STAT, VEGF, HIF-1, and other signaling pathways to affect inflammatory cascade reaction, angiogenesis, oxidative stress, pyroptosis, apoptosis, and other pathological processes via paeoniflorin, butylphthalide, dehydrated safflower yellow B, 3,4-dicaffeoylquinic acid, amygdalin, paeoniflorin, and ligusticolactone. Molecular docking and in vitro pharmacodynamic validation revealed that the target cell trapping active components could promote neovascularization in rat brain microvascular endothelial cells(rBMECs) in the oxygen-glucose deprivation/reoxygenation(OGD/R) model. The application of target cell trapping coupled with UPLC-Q-TOF-MS technology can rapidly screen out the potential active components in THSWD. The active components of THSWD can be predicted to intervene in the pathogenesis of IS through network pharmacology, and molecular docking combined with experimental validation can further clarify the efficacy, thus providing a theoretical basis for research ideas on the pharmacodynamic substance basis of traditional Chinese medicine compounds.


Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Animales , Ratas , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Medicamentos Herbarios Chinos/farmacología
4.
Mol Nutr Food Res ; 67(19): e2300232, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37658487

RESUMEN

SCOPE: Gastrointestinal toxicity is one of the major side effects of abdominopelvic tumor radiotherapy. Studies have shown that perillaldehyde (PAH) has antioxidant, antiinflammatory, antimicrobial activity, and antitumor effects. This study aims to determine whether PAH has radioprotective effects on radiation-induced intestinal injury and explore the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are gavaged with PAH for 7 days, then exposed to a single dose of 13 Gy X-ray total abdominal irradiation (TAI). PAH treatment prolongs the survival time, promotes the survival of crypt cells, attenuates radiation-induced DNA damage, and mitigates intestinal barrier damage in the irradiated mice. PAH also shows radioprotective effects in intestinal crypt organoids and human intestinal epithelial cells (HIEC-6). PAH-mediated radioprotection is associated with the upregulation of nuclear factor erythroid-2 related factor 2 (Nrf2), activation of the antioxidant pathway, and inhibition of ferroptosis. Notably, treatment with the Nrf2 inhibitor ML385 abolishes the protective effects of PAH, indicating that Nrf2 activation is essential for PAH activity. CONCLUSION: PAH inhibits ionizing radiation (IR)-induced ferroptosis and attenuates intestinal injury after irradiation by activating Nrf2 signaling. Therefore, PAH is a promising therapeutic strategy for IR-induced intestinal injury.

5.
Altern Ther Health Med ; 29(6): 430-435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37384406

RESUMEN

Objective: The prognosis of femoral neck fractures is affected by factors including age and type of fracture. This study aimed to explore the associations among postsurgical outcomes of internal fixation for femoral neck fracture (healing rate, necrosis rate, and joint function score) and age and type of fracture. Methods: We retrospectively analyzed 297 cases of femoral neck fracture treated with internal fixation between February 2008 and October 2018. The postoperative femoral neck nonunion rate (a measure of healing) and femoral head necrosis rate were determined by x-ray and computed tomography. The Harris hip score (a measure of joint function and pain) was calculated. The effects of age and fracture type on these factors were analyzed. Results: There was no significant difference in the rate of femoral head necrosis and postoperative joint function scores among the different age groups. There was a significant difference in the postoperative rate of femoral head necrosis by Garden (P = .001) and Pauwels (P = .01) fracture types. No significant differences were noted for the Harris hip score for fractures characterized by the Pauwels classification (P = .09). However, the Harris hip scores differed significantly among groups for fractures categorized by the Garden classification (P = .001). Conclusions: Fracture type but not age is closely related to femoral head necrosis and Harris hip score after internal fixation of femoral neck fractures.


Asunto(s)
Fracturas del Cuello Femoral , Necrosis de la Cabeza Femoral , Humanos , Estudios de Seguimiento , Estudios Retrospectivos , Pronóstico , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/cirugía , Fijación Interna de Fracturas/métodos , Resultado del Tratamiento
6.
Redox Biol ; 55: 102413, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932693

RESUMEN

Ferroptosis is a newly recognized form of regulated cell death that is characterized by severe lipid peroxidation initiated by iron overload and the generation of reactive oxygen species (ROS). However, the role of iron in ionizing radiation (IR)-induced intestinal injury has not been fully illustrated yet. In this study, we found that IR induced ferroptosis in intestinal epithelial cells, as indicated by the increase in intracellular iron levels and lipid peroxidation, upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, reduced glutathione peroxidase 4 (GPX4) mRNA and glutathione (GSH) levels, and significant mitochondrial damage. In addition, the iron chelator deferoxamine (DFO) attenuated IR-induced ferroptosis and intestinal injury in vitro and in vivo. Intriguingly, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) mitigated IR-induced ferritin downregulation, iron overload and ferroptosis. IR increased the levels of nuclear receptor coactivator 4 (NCOA4) mRNA and protein. NCOA4 knockdown significantly inhibited the reduction of ferritin, decreased the level of intracellular free iron, and mitigated ferroptosis induced by IR in HIEC cells, indicating that NCOA4-mediated autophagic degradation of ferritin (ferritinophagy) was required for IR-induced ferroptosis. Furthermore, cytoplasmic iron further activated mitoferrin2 (Mfrn2) on the mitochondrial membrane, which in turn increased iron transport into the mitochondria, resulting in increased ROS production and ferroptosis. In addition, mice fed with an iron-deficient diet for 3 weeks showed a significant reversal in the intestinal injury induced by abdominal IR exposure. Taken together, ferroptosis is a novel mechanism of IR-induced intestinal epithelial cytotoxicity, and is dependent on NCOA4-mediated ferritinophagy.

7.
Front Oncol ; 12: 848107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480105

RESUMEN

The high radiosensitivity of the intestinal epithelium limits the outcomes of radiotherapy against abdominal malignancies, which results in poor prognosis. Currently, no effective prophylactic or therapeutic strategy is available to mitigate radiation toxicity in the intestine. Our previous study revealed that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) attenuates radiation-induced intestinal injury (RIII). The aim of the present study was to determine the effect of EGCG on the intestinal flora of irradiated mice. EGCG administration reduced radiation-induced intestinal mucosal injury, and significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and Ki67+ crypt cells. In addition, EGCG reversed radiation-induced gut dysbiosis, restored the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria. Our findings provide novel insight into EGCG-mediated remission of RIII, revealing that EGCG could be a potential modulator of gut microbiota to prevent and treat RIII.

8.
Front Cell Infect Microbiol ; 11: 717636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760714

RESUMEN

The acute radiation-induced intestinal injury (RIII) has raised much concerns and is influenced by non-cytocidal radiation effects including the perturbations in gut microbiota. Although a number of studies have reported alteration in gut microbiota following radiation, little is known about its dynamic variation in the progression of acute RIII. In this study, mouse model were treated with total body irradiation (TBI) of 0, 4, 8 and 12 Gy, and the intestinal tissues and fecal samples were collected at 6 h, 3.5 d and 7 d post radiation. We found that the intestinal injuries were manifested in a radiation dose-dependent manner. Results from 16S rRNA gene sequencing demonstrated that the diversity of gut microbiota was not significantly affected at the prodromal stage of acute RIII, after 6 h of radiation. At the critical stage of acute RIII, after 3.5 d of radiation, the composition of gut microbiota was correlated with the radiation dose. The Pearson's correlation analysis showed that the relative abundances of phylum Proteobacteria, genera Escherichia-Shigella and Eubacterium xylanophilum_group, and species Lactobacillus murinus exhibited linear correlations with radiation dose. At the recovery stage of acute RIII, after 7 d of radiation, the diversity of gut microbiota decreased as a whole, among which the relative abundance of phyla Proteobacteria and Bacteroides increased, while that of phylum Tenericutes and genus Roseburia decreased. The intra-gastric administration of compound probiotics for 14 days improved the survival duration of mice exposed to 9 Gy TBI, alleviated the intestinal epithelial injury and partially restored the diversity of gut microbiota. Our findings suggest that acute RIII is accompanied by the dysbiosis of gut microbiota, including its decreased diversity, reduced abundance of beneficial bacteria and increased abundance of pathogens. The gut microbiota cannot be used as sensitive biomarkers at the prodromal stage in acute RIII, but are potential biomarkers at the critical stage of acute RIII. The dysbiosis is persistent until the recovery stage of acute RIII, and interventions are needed to restore it. The administration of probiotics is an effective strategy to protect against acute RIII and subsequent dysbiosis.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Disbiosis , Eubacterium , Heces , Lactobacillus , Ratones , ARN Ribosómico 16S/genética
9.
J Plast Reconstr Aesthet Surg ; 71(2): 209-216, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29153422

RESUMEN

AIM: To investigate blood supply features of the flap based on the plantar digital artery arch and arch branch artery, and the treatment of outcomes of reconstructed fingers by the plantar digital artery arch branch island flap. METHODS: Eight fresh foot specimens were employed with red emulsion infusion and microdissection. The vascular organization was observed in the second toe, such as initiation site, the course, and the number of the plantar digital artery arch branch. There were 15 fingers of 13 patients (8 males and 5 females) with finger defects accompanied by toe transfer, using the plantar digital artery arch branch flap inserted in the neck of the second toe to correct the appearance defect caused by a narrow "neck" and a bulbous tip. RESULTS: The intact plantar digital arches were identified in all specimens. The plantar digital artery arch had 5 branches. The range of external diameter of the arch branch was 0.4-0.6 mm. All the plantar digital artery arch branch island flaps and the reconstructed fingers survived. These cases were conducted with a follow-up period for 3-18 months (average, 9 months). All the plantar digital artery arch branch island flaps and reconstructed fingers demonstrated a satisfactory appearance and favorable sense function. The reconstructed finger-tip characteristic was good, with no obvious scar hyperplasia. The range of flexion and extension of reconstructed fingers was favorable as well. CONCLUSIONS: The plantar digital artery arch and arch branch artery possess regular vasa vasorum and abundant vascularity. A flap based on the plantar digital artery arch branch is an ideal selection for plastic surgery of reconstructed fingers.


Asunto(s)
Traumatismos de los Dedos/cirugía , Procedimientos de Cirugía Plástica/métodos , Colgajos Quirúrgicos/irrigación sanguínea , Dedos del Pie/irrigación sanguínea , Dedos del Pie/trasplante , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
10.
Zhongguo Zhen Jiu ; 33(11): 1022-5, 2013 Nov.
Artículo en Chino | MEDLINE | ID: mdl-24494295

RESUMEN

OBJECTIVE: To explore the efficacy of electric acupoint stimulation on shivering in cesarean section. METHODS: Eighty cases of parturients, under the America Society of Anesthesiologists (ASA) physical status II , were randomized into a transcutaneous electrical acupoint stimulation (TEAS) assisted anesthesia group (group A) and an anesthesia group (group B). Spinal-epidural anesthesia(CSEA) puncture was applied to both groups and 8 mg of 0. 75% bubivacaine was given by spinal injection, the block level was T4 T8. In group A, TEAS was applied before CSEA at paired acupoints-ipsilateral Hegu (LI 4)-Laogong (PC 8) and Sanyinjiao (SP 6)-Zusanli (ST 36) till ending the surgery. The 4 pair of bilateral acupoints were fixed with self-adhesive electrodes and connected with Han's acupoint and nerve stimulator (HANS, LH402H), the frequency was 2 Hz/ 15 Hz, the intensity was 10- 30 mA and the form was densedisperse wave within the patients' tolarance. The heart rate (HR), mean arterial pressure (MAP), oxyhemoglobin saturation (SPO) and shivering degree were recorded before anesthesia (To), 1 min after anesthesia puncture (Ti), 1 min after the delivery (Tz), during abdomen closure (T3) and at the end of surgery (T4). RESULTS: The occurrence rate of shivering was 35. 0% (14/40) in group A, which was lower to 67. 5% (27/40, P<0. 05) in group B; the degree of shivering was lighter in group A than that in group B at T2, T3 and T4 (all P<0. 01). In group A, HR was faster at T1 and T2 compared to that at To (all P<0. 05), while at T3 and T4, the HR was the same with that before anesthesia (all P>0. 05). In group B, the HR was faster at T1, T2, T3 and T4 compared to that at T0 (P<0. 05, P<0. 01). In both groups, the MAP was lower at T1, T2 (P<0.05,P<0.01) and resumed to that before anesthesia at T3 and T4 (all P>0.05); there was no statistical significance of SPO2 in both groups (all P>0.05). CONCLUSION: TEAS can reduce the occurrence rate of shivering and steady the heart rate in cesarean section.


Asunto(s)
Analgesia por Acupuntura , Puntos de Acupuntura , Anestesia Obstétrica/efectos adversos , Tiritona , Adulto , Cesárea , Femenino , Humanos , Embarazo , Estimulación Eléctrica Transcutánea del Nervio , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA