Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Physiol ; 238(9): 2010-2025, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37435888

RESUMEN

Starch-binding domain-containing protein 1 (STBD1) is a glycogen-binding protein discovered in skeletal muscle gene differential expression that is pivotal to cellular energy metabolism. Recent studies have indicated that STBD1 is involved in many physiological processes, such as glycophagy, glycogen accumulation, and lipid droplet formation. Moreover, dysregulation of STBD1 causes multiple diseases, including cardiovascular disease, metabolic disease, and even cancer. Deletions and/or mutations in STBD1 promote tumorigenesis. Therefore, STBD1 has garnered considerable interest in the pathology community. In this review, we first summarized the current understanding of STBD1, including its structure, subcellular localization, tissue distribution, and biological functions. Next, we examined the roles and molecular mechanisms of STBD1 in related diseases. Based on available research, we discussed the novel function and future of STBD1, including its potential application as a therapeutic target in glycogen-related diseases. Given the significance of STBD1 in energy metabolism, an in-depth understanding of the protein is crucial for understanding physiological processes and developing therapeutic strategies for related diseases.


Asunto(s)
Glucógeno , Proteínas de la Membrana , Proteínas Musculares , Glucógeno/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Mutación , Humanos , Animales , Proteínas Musculares/metabolismo
2.
Cell Rep ; 42(7): 112797, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436890

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy lacks persistent efficacy with "on-target, off-tumor" toxicities for treating solid tumors. Thus, an antibody-guided switchable CAR vector, the chimeric Fc receptor CD64 (CFR64), composed of a CD64 extracellular domain, is designed. T cells expressing CFR64 exert more robust cytotoxicity against cancer cells than CFR T cells with high-affinity CD16 variant (CD16v) or CD32A as their extracellular domains. CFR64 T cells also exhibit better long-term cytotoxicity and resistance to T cell exhaustion compared with conventional CAR T cells. With trastuzumab, the immunological synapse (IS) established by CFR64 is more stable with lower intensity induction of downstream signaling than anti-HER2 CAR T cells. Moreover, CFR64 T cells exhibit fused mitochondria in response to stimulation, while CARH2 T cells contain predominantly punctate mitochondria. These results show that CFR64 T cells may serve as a controllable engineered T cell therapy with prolonged persistence and long-term antitumor activity.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores Fc , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto , Animales
3.
Nat Commun ; 13(1): 6051, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229619

RESUMEN

Co-expression of chimeric switch receptors (CSRs) specific for PD-L1 improves the antitumor effects of chimeric antigen receptor (CAR) T cells. However, the effects of trans-recognition between CSRs and PD-L1 expressed by activated CAR T cells remain unclear. Here, we design a CSR specific for PD-L1 (CARP), containing the transmembrane and cytoplasmic signaling domains of CD28 but not the CD3 ζ chain. We show that CARP T cells enhance the antitumor activity of anti-mesothelin CAR (CARMz) T cells in vitro and in vivo. In addition, confocal microscopy indicates that PD-L1 molecules on CARMz T cells accumulate at cell-cell contacts with CARP T cells. Using single-cell RNA-sequencing analysis, we reveal that CARP T cells promote CARMz T cells differentiation into central memory-like T cells, upregulate genes related to Th1 cells, and downregulate Th2-associated cytokines through the CD70-CD27 axis. Moreover, these effects are not restricted to PD-L1, as CAR19 T cells expressing anti-CD19 CSR exhibit similar effects on anti-PSCA CAR T cells with truncated CD19 expression. These findings suggest that target trans-recognition by CSRs on CAR T cells may improve the efficacy and persistence of CAR T cells via the CD70-CD27 axis.


Asunto(s)
Antígenos CD28 , Receptores Quiméricos de Antígenos , Antígeno B7-H1/genética , Antígenos CD28/genética , Línea Celular Tumoral , Citocinas/metabolismo , ARN , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Eur J Immunol ; 52(11): 1700-1711, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36165274

RESUMEN

Since Z-nucleic acid was identified in the 1970s, much is still unknown about its biological functions and nature in vivo. Recent studies on adenosine deaminase acting on RNA 1 (ADAR1) and Z-DNA-binding protein 1 (ZBP1) have highlighted its function in immune responses. Specifically, Z-RNAs, either endogenous or induced by viral infection, are sensed by ZBP1 and activate necroptosis. Z-RNAs act as the stimuli that induce innate immune responses through various pathways, including melanoma differentiation-associated protein 5 (MAD5)-mitochondrial antiviral-signaling protein (MAVS)-mediated type I IFN activation and proteinase kinase R (PKR)-dependent integrated stress response, and their immunostimulatory potential is curtailed by RNA editing conducted by ADAR1. Aberrant immune responses induced by Z-RNAs are associated with human diseases. They also induce pathogenesis in mice. Unlike Z-RNAs, the biological functions of Z-DNAs were barely studied, especially in mammals. Moreover, the origin or sequence preference of Z-nucleic acids requires further investigation. Such knowledge will expand our understanding of Z-nucleic acids, including from which genomic loci and under which circumstances they form, and the mechanisms by which they participate in the physiological activities. In this review, we provide insights in Z-nucleic acid research and highlight the unsolved puzzles.


Asunto(s)
Ácidos Nucleicos , Humanos , Ratones , Animales , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN , Inmunidad Innata , Mamíferos/genética
5.
Mol Ther Oncolytics ; 26: 15-26, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35784403

RESUMEN

Although chimeric antigen receptor T (CAR-T) cells have achieved remarkable successes in hematological malignancies, the efficacies of CAR-T cells against solid tumors remains unsatisfactory. Heterogeneous antigen expression is one of the obstacles on its effective elimination of solid cancer cells. DNAX-activating protein 10 (DAP10) interacts with natural killer group 2D (NKG2D), acting as an adaptor that targets various malignant cells for surveillance. Here, we designed a DAP10 chimeric receptor that utilized native NKG2D on T cells to target NKG2D ligand-expressing cancer cells. We then tandemly incorporated it with anti-glypican 3 (GPC3) single-chain variable fragment (scFv) to construct a dual-antigen-targeting system. T cells expressing DAP10 chimeric receptor (DAP10-T cells) displayed with an enhancement on both cytotoxicity and cytokine secretion against solid cancer cell lines, and its tandem connection with anti-GPC3 scFv (CAR GPC3-DAP10-T cells) exhibited a dual-antigen-targeting capacity on eliminating heterogeneous cancer cells in vitro and suppressing the growth of heterogeneous cancer in vivo. Thus, this novel dual-targeting system enabled a high efficacy on killing cancer cells and extended the recognition profile of CAR-T cells toward tumors, which providing a potential strategy on treatment of solid cancer clinically.

6.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525337

RESUMEN

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Adenosina Desaminasa/genética , Interferón Tipo I/inmunología , ARN Bicatenario/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inosina/genética , Inosina/metabolismo , Interferón Tipo I/genética , Ratones , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Edición de ARN/genética , ARN Bicatenario/metabolismo
7.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807230

RESUMEN

Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses. There are two ZAP isoforms arising from alternative splicing, which differ only at the C termini. It was recently reported that the long isoform (ZAPL) promotes proteasomal degradation of influenza A virus (IAV) proteins PA and PB2 through the C-terminal poly(ADP-ribose) polymerase (PARP) domain, which is missing in the short form (ZAPS), and that this antiviral activity is antagonized by the viral protein PB1. Here, we report that ZAP inhibits IAV protein expression in a PARP domain-independent manner. Overexpression of ZAPS inhibited the expression of PA, PB2, and neuraminidase (NA), and downregulation of the endogenous ZAPS enhanced their expression. We show that ZAPS inhibited PB2 protein expression by reducing the encoding viral mRNA levels and repressing its translation. However, downregulation of ZAPS only modestly enhanced the early stage of viral replication. We provide evidence showing that the antiviral activity of ZAPS is antagonized by the viral protein NS1. A recombinant IAV carrying an NS1 mutant that lost the ZAPS-antagonizing activity replicated better in ZAPS-deficient cells. We further provide evidence suggesting that NS1 antagonizes ZAPS by inhibiting its binding to target mRNA. These results uncover a distinct mechanism underlying the interactions between ZAP and IAV. IMPORTANCE: ZAP is a host antiviral factor that has been extensively reported to inhibit the replication of certain viruses by repressing the translation and promoting the degradation of the viral mRNAs. There are two ZAP isoforms, ZAPL and ZAPS. ZAPL was recently reported to promote IAV protein degradation through the PARP domain. Whether ZAPS, which lacks the PARP domain, inhibits IAV and the underlying mechanisms remained to be determined. Here, we show that ZAPS posttranscriptionally inhibits IAV protein expression. This antiviral activity of ZAP is antagonized by the viral protein NS1. The fact that ZAP uses two distinct mechanisms to inhibit IAV infection and that the virus evolved different antagonists suggests an important role of ZAP in the host effort to control IAV infection and the importance of the threat of ZAP to the virus. The results reported here help us to comprehensively understand the interactions between ZAP and IAV.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/metabolismo , Proteínas no Estructurales Virales/metabolismo , Dedos de Zinc , Empalme Alternativo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Virus de la Influenza A/genética , Mutación , Biosíntesis de Proteínas/efectos de los fármacos , Isoformas de Proteínas , ARN Mensajero/genética , ARN Viral , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA