Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38588467

RESUMEN

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Asunto(s)
Diseño de Fármacos , Elastina , Fibrosis Pulmonar , Receptores de Superficie Celular , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Animales , Ratones , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinasa 12 de la Matriz/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Ratones Endogámicos C57BL , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino
2.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1017-1028, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658145

RESUMEN

Brassica juncea (mustard) is a vegetable crop of Brassica, which is widely planted in China. The yield and quality of stem mustard are greatly influenced by the transition from vegetative growth to reproductive growth, i.e., flowering. The WRKY transcription factor family is ubiquitous in higher plants, and its members are involved in the regulation of many growth and development processes, including biological/abiotic stress responses and flowering regulation. WRKY71 is an important member of the WRKY family. However, its function and mechanism in mustard have not been reported. In this study, the BjuWRKY71-1 gene was cloned from B. juncea. Bioinformatics analysis and phylogenetic tree analysis showed that the protein encoded by BjuWRKY71-1 has a conserved WRKY domain, belonging to class Ⅱ WRKY protein, which is closely related to BraWRKY71-1 in Brassica rapa. The expression abundance of BjuWRKY71-1 in leaves and flowers was significantly higher than that in roots and stems, and the expression level increased gradually along with plant development. The result of subcellular localization showed that BjuWRKY71-1 protein was located in nucleus. The flowering time of overexpressing BjuWRKY71-1 Arabidopsis plants was significantly earlier than that of the wild type. Yeast two-hybrid assay and dual-luciferase reporter assay showed that BjuWRKY71-1 interacted with the promoter of the flowering integrator BjuSOC1 and promoted the expression of its downstream genes. In conclusion, BjuWRKY71-1 protein can directly target BjuSOC1 to promote plant flowering. This discovery may facilitate further clarifying the molecular mechanism of BjuWRKY71-1 in flowering time control, and creating new germplasm with bolting and flowering tolerance in mustard.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza , Proteínas de Plantas , Factores de Transcripción , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética
3.
Front Oncol ; 14: 1367173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444684

RESUMEN

Background: No previous studies have reported on the use of minimally invasive endoscopic therapy for colon cancer in older patients. Case presentation: An 80-year-old man was admitted to our hospital with haematochezia and diagnosed with advanced colon cancer in 2018. Traditional surgical care was rejected by his family. We successfully treated the patient with multiple minimally invasive endoscopic therapies, such as argon plasma coagulation, from 2018 to 2021. Conclusion: Invasive endoscopic therapy is a feasible way to treat colon cancer in older patients.

4.
Plant Physiol Biochem ; 207: 108395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290342

RESUMEN

Flowering is an important developmental transition that greatly affects the yield of many vegetable crops. In cucumber (Cucumis sativus), flowering is regulated by various factors including squamosa promoter-binding-like (SPL) family proteins. However, the role of CsSPL genes in cucumber flowering remains largely unknown. In this study, we cloned the squamosa promoter-binding-like protein 13A (CsSPL13A) gene, which encodes a highly conserved SBP-domain protein that acts as a transcription factor and localizes to the nucleus. Quantitative real-time PCR (qRT-PCR) analysis showed that CsSPL13A was mainly expressed in flowers, and its expression level increased significantly nearing the flowering stage. Additionally, compared with the wild type(WT), CsSPL13A-overexpressing transgenic cucumber plants (CsSPL13A-OE) showed considerable differences in flowering phenotypes, such as early flowering, increased number of male flowers, and longer flower stalks. CsSPL13A upregulated the expression of the flowering integrator gene Flowering Locus T (CsFT) and the sugar-mediated flowering gene ß-amylase (CsBAM) in cucumber. Yeast one-hybrid and firefly enzyme reporter assays confirmed that the CsSPL13A protein could directly bind to the promoters of CsFT and CsBAM, suggesting that CsSPL13A works together with CsFT and CsBAM to mediate flowering in cucumber. Overall, our results provide novel insights into the regulatory network of flowering in cucumber as well as new ideas for the genetic improvement of cucumber varieties.


Asunto(s)
Cucumis sativus , Cucumis sativus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flores/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas
5.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 81-93, 2024 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-38258633

RESUMEN

The chloroplast genome encodes many key proteins involved in photosynthesis and other metabolic processes, and metabolites synthesized in chloroplasts are essential for normal plant growth and development. Root-UVB (ultraviolet radiation B)-sensitive (RUS) family proteins composed of highly conserved DUF647 domain belong to chloroplast proteins. They play an important role in the regulation of various life activities such as plant morphogenesis, material transport and energy metabolism. This article summarizes the recent advances of the RUS family proteins in the growth and development of plants such as embryonic development, photomorphological construction, VB6 homeostasis, auxin transport and anther development, with the aim to facilitate further study of its molecular regulation mechanism in plant growth and development.


Asunto(s)
Cloroplastos , Rayos Ultravioleta , Femenino , Embarazo , Humanos , Transporte Biológico , Cloroplastos/genética , Desarrollo Embrionario , Desarrollo de la Planta/genética
6.
Nanomaterials (Basel) ; 13(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37764603

RESUMEN

Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L-1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).

7.
Front Plant Sci ; 14: 1164467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521920

RESUMEN

Male sterility is a highly attractive agronomic trait as it effectively prevents self-fertilization and facilitates the production of high-quality hybrid seeds in plants. Timely release of mature pollen following anther dehiscence is essential for stamen development in flowering plants. Although several theories have been proposed regarding this, the specific mechanism of anther development in eggplant remains elusive. In this study, we selected an R2R3-MYB transcription factor gene, SmMYB108, that encodes a protein localized primarily in the nucleus by comparing the transcriptomics of different floral bud developmental stages of the eggplant fertile line, F142. Quantitative reverse transcription polymerase chain reaction revealed that SmMYB108 was preferentially expressed in flowers, and its expression increased significantly on the day of flowering. Overexpression of SmMYB108 in tobacco caused anther dehiscence. In addition, we found that SmMYB108 primarily functions as a transcriptional activator via C-terminal activation (amino acid 262-317). Yeast one-hybrid and dual-luciferase reporter assays revealed that genes (SmMYB21, SmARF6, and SmARF8) related to anther development targeted the SmMYB108 promoter. Overall, our results provide insights into the molecular mechanisms involved in the regulation of anther development by SmMYB108.

8.
J Med Chem ; 66(12): 8251-8266, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37279405

RESUMEN

Kidney fibrosis is a serious consequence of chronic kidney disease (CKD), and currently, there is no effective pharmacological treatment available. Cellular communication network-2 (CCN2/CTGF) is an extracellular matrix (ECM) protein that regulates the fibrotic process by activating the epidermal growth factor receptor (EGFR) signaling pathway. We herein present the discovery and structure-activity relationship study of novel peptides targeting CCN2 to develop potent and stable specific inhibitors of the CCN2/EGFR interaction. Remarkably, the 7-mer cyclic peptide OK2 exhibited potent activities to inhibit CCN2/EGFR-induced STAT3 phosphorylation and cellular ECM protein synthesis. Subsequent in vivo studies demonstrated that OK2 significantly alleviated renal fibrosis in a unilateral ureteral obstruction (UUO) mouse model. Moreover, this study first revealed that the peptide candidate could efficiently block CCN2/EGFR interaction through binding to the CT domain of CCN2, providing a new alternative strategy for peptide-based targeting of CCN2 and modulating CCN2/EGFR-mediated biological functions in kidney fibrosis.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Péptidos Cíclicos , Ratones , Animales , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Receptores ErbB/metabolismo , Riñón/metabolismo , Fibrosis
9.
Plant Sci ; 333: 111734, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207819

RESUMEN

The stamen, as the male reproductive organ of flowering plants, plays a critical role in completing the life cycle of plants. MYC transcription factors are members of the bHLH IIIE subgroup and participate in a number of plant biological processes. In recent decades, a number of studies have confirmed that MYC transcription factors actively participate in the regulation of stamen development and have a critical impact on plant fertility. In this review, we summarized how MYC transcription factors play a role in regulating secondary thickening of the anther endothecium, the development and degradation of the tapetum, stomatal differentiation, and the dehydration of the anther epidermis. With regard to anther physiological metabolism, MYC transcription factors control dehydrin synthesis, ion and water transport, and carbohydrate metabolism to influence pollen viability. Additionally, MYCs participate in the JA signal transduction pathway, where they directly or indirectly control the development of stamens through the ET-JA, GA-JA, and ABA-JA pathways. By identifying the functions of MYCs during plant stamen development, it will help us to obtain a more comprehensive understanding not only on the molecular functions of this TF family but also the mechanisms underlying stamen development.


Asunto(s)
Flores , Plantas , Proteínas Proto-Oncogénicas c-myc , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Polen , Factores de Transcripción/metabolismo
10.
Front Plant Sci ; 14: 1142147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082337

RESUMEN

The genus Brassica contains a diverse group of important vegetables and oilseed crops. Genome sequencing has been completed for the six species (B. rapa, B. oleracea, B. nigra, B. carinata, B. napus, and B. juncea) in U's triangle model. The purpose of the study is to investigate whether positively and negatively selected genes (PSGs and NSGs) affect gene feature and function differentiation of Brassica tetraploids in their evolution and domestication. A total of 9,701 PSGs were found in the A, B and C subgenomes of the three tetraploids, of which, a higher number of PSGs were identified in the C subgenome as comparing to the A and B subgenomes. The PSGs of the three tetraploids had more tandem duplicated genes, higher single copy, lower multi-copy, shorter exon length and fewer exon number than the NSGs, suggesting that the selective modes affected the gene feature of Brassica tetraploids. The PSGs of all the three tetraploids enriched in a few common KEGG pathways relating to environmental adaption (such as Phenylpropanoid biosynthesis, Riboflavin metabolism, Isoflavonoid biosynthesis, Plant-pathogen interaction and Tropane, piperidine and pyridine alkaloid biosynthesis) and reproduction (Homologous recombination). Whereas, the NSGs of the three tetraploids significantly enriched in dozens of biologic processes and pathways without clear relationships with evolution. Moreover, the PSGs of B. carinata were found specifically enriched in lipid biosynthesis and metabolism which possibly contributed to the domestication of B. carinata as an oil crop. Our data suggest that selective modes affected the gene feature of Brassica tetraploids, and PSGs contributed in not only the evolution but also the domestication of Brassica tetraploids.

11.
J Med Chem ; 66(7): 4689-4702, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36938613

RESUMEN

Liver fibrosis is the undesirable result of excessive deposition of the extracellular matrix (ECM), and elastin is known as one of the key ECM components. Under specific pathological conditions, elastin undergoes degradation to produce elastin-derived peptides (EDPs), which bind to elastin-binding protein (EBP) to activate corresponding signal pathways, thus accelerating fibrosis progression. Herein, we describe the discovery of novel cyclic peptides that function as potent and stable inhibitors to interfere with the peptide-protein interaction between EDPs and EBP. Remarkably, CXJ-2 exhibited potent activities to inhibit the PI3K/ERK pathway and decrease hepatic stellate cell proliferation and migration. The subsequent in vivo study demonstrated that CXJ-2 possessed potent antifibrotic efficacy in ameliorating CCl4-induced liver fibrosis. This work provides a successful pharmacological strategy for the development of novel inhibitors of EDPs-EBP interaction, which sheds new light on how cyclic peptides disrupt peptide-protein interaction and may also provide new structure-oriented therapeutic candidates in liver fibrosis.


Asunto(s)
Elastina , Péptidos Cíclicos , Humanos , Elastina/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Péptidos/farmacología , Cirrosis Hepática/tratamiento farmacológico
12.
Front Plant Sci ; 13: 986811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247593

RESUMEN

Flowering is crucial for sexual reproductive success in angiosperms. The core regulatory factors, such as FT, FUL, and SOC1, are responsible for promoting flowering. BRANCHED 1 (BRC1) is a TCP transcription factor gene that plays an important role in the regulation of branching and flowering in diverse plant species. However, the functions of BjuBRC1 in Brassica juncea are largely unknown. In this study, four homologs of BjuBRC1 were identified and the mechanism by which BjuBRC1 may function in the regulation of flowering time was investigated. Amino acid sequence analysis showed that BjuBRC1 contained a conserved TCP domain with two nuclear localization signals. A subcellular localization assay verified the nuclear localization of BjuBRC1. Expression analysis revealed that BjuBRC1-1 was induced by short days and was expressed abundantly in the leaf, flower, and floral bud but not in the root and stem in B. juncea. Overexpression of BjuBRC1-1 in the Arabidopsis brc1 mutant showed that BjuBRC1-1 delayed flowering time. Bimolecular fluorescent complementary and luciferase complementation assays showed that four BjuBRC1 proteins could interact with BjuFT in vivo. Notably, BjuBRC1 proteins formed heterodimers in vivo that may impact on their function of negatively regulating flowering time. Yeast one-hybrid, dual-luciferase reporter, and luciferase activity assays showed that BjuBRC1-1 could directly bind to the promoter of BjuFUL, but not BjuFT or BjuSOC1, to repress its expression. These results were supported by the reduced expression of AtFUL in transgenic Arabidopsis overexpressing BjuBRC1-1. Taken together, the results indicate that BjuBRC1 genes likely have a conserved function in the negative regulation of flowering in B. juncea.

13.
Materials (Basel) ; 15(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955134

RESUMEN

Achieving multi-color luminescence with a single atomic center in transition metal complexes is a challenge. In this work, luminescent materials with tunable emission properties were realized by complexation between aluminum (III) ions with the ligands 3-hydroxyflavone (3-HF) and 5,7-dichloro-8-hydroxyquinoline (DCHQ). Aluminum (III) complexes with a single ligand emitted blue from 3-HF and green from DCHQ. High quantum yields (QYs) of 29.42% and 37.00% were also obtained, respectively. DFT calculations revealed details of the photophysical properties of the complexes. Correspondingly, cyan light emission was obtained if these two complexes were mixed together, from which the emission wavelength was located at 470 nm and the QY was 20.52%, under 290 nm excitation. More importantly, the cyan light emitted by the mixtures had selective sensitivity to different metal ions, resulting in either quenching the fluorescence (in the case of Fe3+) or enhancing the fluorescence (in the case of In3+). The fluorescence enhancement effect of In3+ on metal complexes has not been previously reported, neither for transition metal nor lanthanide ions. The linear quenching behavior of Fe3+ functions in the 50-700 µM concentration range, and the linear enhancement behavior of In3+ is demonstrated in the 300-800 mM concentration range.

14.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2687-2699, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002403

RESUMEN

Transcription factors, the proteins with special structures, can bind to specific sites and regulate specific expression of target genes. NAC (NAM, ATAF1/2, CUC1/2) transcription factors, unique to plants, are composed of a conserved N-terminal domain and a highly variable C-terminal transcriptional activation domain. NAC transcription factors are involved in plant growth and development, responses to biotic and abiotic stresses and other processes, playing a regulatory role in flower development. In this paper, we reviewed the studies about NAC transcription factors in terms of discovery, structure, and regulatory roles in anther development, other floral organ development and flowering time. This review will provide a theoretical basis for deciphering the regulatory mechanism and improving the regulatory network of NAC transcription factors in flower development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Flores/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 3029-3040, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002429

RESUMEN

Brassica juncea is a yearly or biennial vegetable in Brassica of Cruciferae. The yield and quality of its product organs are affected by flowering time. WRKY proteins family can respond to biological and abiotic stresses, developmental regulation and signal transduction. WRKY75 is an important member of WRKY family which can regulate flowering, but the flowering regulation mechanism in B. juncea has not been reported. In this study, a gene BjuWRKY75 in B. juncea was cloned, and the encoded-protein belonged to the group Ⅱ of WRKY protein with highly conserved domain. BjuWRKY75 had the highest homology with BriWRKY75 of Brassica nigra. The relative expression level of BjuWRKY75 in flowers was significantly higher than that in leaves and stems, and it was expressed stably in leaves. BjuWRKY75 protein was localized in the nucleus and interacted with the promoter of the flowering integrator BjuFT, which contained the W-box response element for the interaction between protein and DNA. Thus, it could transcriptionally activate the expression of the downstream genes. The overexpression of BjuWRKY75 in Arabidopsis led to earlier flowering significantly. In conclusion, BjuWRKY75 could directly target the promoter of BjuFT and accelerate flowering. These results may facilitate further study on the regulation of flowering molecules of BjuWRKY75.


Asunto(s)
Arabidopsis , Planta de la Mostaza , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas
16.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743042

RESUMEN

The clinical use of anticancer drugs necessitates new technologies for their safe, sensitive, and selective detection. In this article, lanthanide (Eu3+ and Tb3+)-loaded γ-cyclodextrin nano-aggregates (ECA and TCA) are reported, which sensitively detects the anticancer drug irinotecan by fluorescence intensity changes. Fluorescent lanthanide (Eu3+ and Tb3+) complexes exhibit high fluorescence intensity, narrow and distinct emission bands, long fluorescence lifetime, and insensitivity to photobleaching. However, these lanthanide (Eu3+ and Tb3+) complexes are essentially hydrophobic, toxic, and non-biocompatible. Lanthanide (Eu3+ and Tb3+) complexes were loaded into naturally hydrophilic γ-cyclodextrin to form fluorescent nano-aggregates. The biological nontoxicity and cytocompatibility of ECA and TCA fluorescent nanoparticles were demonstrated by cytotoxicity experiments. The ECA and TCA fluorescence nanosensors can detect irinotecan selectively and sensitively through the change of fluorescence intensity, with detection limits of 6.80 µM and 2.89 µM, respectively. ECA can safely detect irinotecan in the cellular environment, while TCA can detect irinotecan intracellularly and is suitable for cell labeling.


Asunto(s)
Antineoplásicos , Elementos de la Serie de los Lantanoides , gamma-Ciclodextrinas , Antineoplásicos/farmacología , Irinotecán , Elementos de la Serie de los Lantanoides/química
17.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1724-1737, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611725

RESUMEN

The cultivation and production of cucumber are seriously affected by downy mildew caused by Pseudoperonospora cubensis. Downy mildew damages leaves, stems and inflorescences, and then reduces the yield and quality of cucumber. This review summarized the research advances in cucumber downy mildew, including pathogen detection and defense pathways, regulatory factors, mining of pathogens-resistant candidate genes, proteomic and genomic analysis, and development of QTL remarks. This review may facilitate clarifying the resistance mechanisms of cucumber to downy mildew.


Asunto(s)
Cucumis sativus , Oomicetos , Peronospora , Cucumis sativus/genética , Oomicetos/genética , Enfermedades de las Plantas/genética , Proteómica
18.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1738-1752, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611726

RESUMEN

Anthocyanins are widely distributed water-soluble pigments that not only give the fruit colorful appearances, but also are important sources of natural edible pigments. In recent years, the interest on anthocyanins of solanaceous vegetables is increasing. This paper summarized the structure of anthocyanins and its biosynthetic pathway, the structural genes and regulatory genes involved in the biosynthesis of anthocyanins in solanaceous vegetables, as well as the environmental factors affecting the biosynthesis. This review may help clarify the synthesis and regulation mechanism of anthocyanins in solanaceous vegetables and make better use of anthocyanins for quality breeding of fruit colors.


Asunto(s)
Antocianinas , Verduras , Antocianinas/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Verduras/genética
19.
Materials (Basel) ; 15(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268951

RESUMEN

Copper (II) complexes containing mixed ligands were synthesized in dimethyl formamide (DMF). The intense cyan emission at an ambient temperature is observed for solid copper (II) complexes with salicylic acid and a 12% quantum yield with a fluorescent lifetime of approximately 10 ms. Hence, copper (II) complexes with salicylic acid are excellent candidates for photoactive materials. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) reveal that the divalent copper metal centers coordinate with the nitrogen and oxygen lone pairs of conjugate ligands. XPS binding energy trends for core electrons in lower-lying orbitals are similar for all three copper (II) complexes: nitrogen 1s and oxygen 1s binding energies increase relative to those for undiluted ligands, and copper 2p3/2 binding energies decrease relative to that for CuCl2. The thermal behavior of these copper complexes reveals that the thermal stability is characterized by the following pattern: Cu(1,10-phenanthroline)(salicylic acid) > Cu(1,10-phenanthroline)(2,2'-bipyridine) > Cu(1,10-phenanthroline)(1-benzylimidazole)2.

20.
Polymers (Basel) ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267728

RESUMEN

With the growing needs for flexible fluorescence emission materials, emission fibers and related wearable fabrics with bright emission properties have become key factors for wearable applications. In this article, novel cuboid-like crystals of Eu3+ complexes were generated. Except for light-energy-harvesting ligands of thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline hydrate (Phen), the crystal structures were adjusted by other functional amphiphilic molecules. Not only does ETPC-SA, adjusted by stearic acid, have a regular cuboid-like crystal with a size of about 2 µm size, but it also generates the best photon emission property, with a fluorescence quantum yield of 98.4% fluorescence quantum yield in this report. Furthermore, we succeeded in producing novel fluorescent fibers by mini-twin-screw extrusion, and it was easy to form bright red fabrics, which are equipped with strong fluorescence intensity, flexibility, and a smooth hand feeling, with the normal fabricating method in our work. It is worth noting that ETPC-HQ fibers, which carry a crystal complex adjusted by hydroquinone, possess the lowest quantum yield but have the longest average fluorescence lifetime of 1259 µs. This result means that a low-density polyethylene (LDPE) matrix could make excited electrons stand in the excited state for a relatively long time when adjusted by hydroquinone, so as to increase the afterglow property of fluorescent fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA