Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
1.
Small Methods ; : e2400697, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824667

RESUMEN

Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.

2.
Asian J Surg ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825417
3.
Clin Exp Med ; 24(1): 93, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693424

RESUMEN

Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias/genética , Neoplasias/patología , Biomarcadores de Tumor/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
4.
Cell Death Discov ; 10(1): 223, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719811

RESUMEN

Mechanical overloading can promote cartilage senescence and osteoarthritis (OA) development, but its impact on synovial macrophages and the interaction between macrophages and chondrocytes remain unknown. Here, we found that macrophages exhibited M1 polarization under mechanical overloading and secreted ectosomes that induced cartilage degradation and senescence. By performing miRNA sequencing on ectosomes, we identified highly expressed miR-350-3p as a key factor mediating the homeostatic imbalance of chondrocytes caused by M1-polarized macrophages, this result being confirmed by altering the miR-350-3p level in chondrocytes with mimics and inhibitor. In experimental OA mice, miR-350-3p was increased in synovium and cartilage, while intra-articular injection of antagomir-350-3p inhibited the increase of miR-350-3p and alleviated cartilage degeneration and senescence. Further studies showed that macrophage-derived ectosomal miR-350-3p promoted OA progression by inhibiting nuclear receptor binding SET domain protein 1(NSD1) in chondrocytes and regulating histone H3 lysine 36(H3K36) methylation. This study demonstrated that the targeting of macrophage-derived ectosomal miRNAs was a potential therapeutic method for mechanical overload-induced OA.

5.
Front Immunol ; 15: 1353695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765004

RESUMEN

Objectives: This study aimed to analyze active compounds and signaling pathways of CH applying network pharmacology methods, and to additionally verify the molecular mechanism of CH in treating AP. Materials and methods: Network pharmacology and molecular docking were firstly used to identify the active components of CH and its potential targets in the treatment of AP. The pancreaticobiliary duct was retrogradely injected with sodium taurocholate (3.5%) to create an acute pancreatitis (AP) model in rats. Histological examination, enzyme-linked immunosorbent assay, Western blot and TUNEL staining were used to determine the pathway and mechanism of action of CH in AP. Results: Network pharmacological analysis identified 168 active compounds and 276 target proteins. In addition, there were 2060 targets associated with AP, and CH had 177 targets in common with AP. These shared targets, including STAT3, IL6, MYC, CDKN1A, AKT1, MAPK1, MAPK3, MAPK14, HSP90AA1, HIF1A, ESR1, TP53, FOS, and RELA, were recognized as core targets. Furthermore, we filtered out 5252 entries from the Gene Ontology(GO) and 186 signaling pathways from the Kyoto Encyclopedia of Genes and Genomes(KEGG). Enrichment and network analyses of protein-protein interactions predicted that CH significantly affected the PI3K/AKT signaling pathway, which played a critical role in programmed cell death. The core components and key targets showed strong binding activity based on molecular docking results. Subsequently, experimental validation demonstrated that CH inhibited the phosphorylation of PI3K and AKT in pancreatic tissues, promoted the apoptosis of pancreatic acinar cells, and further alleviated inflammation and histopathological damage to the pancreas in AP rats. Conclusion: Apoptosis of pancreatic acinar cells can be enhanced and the inflammatory response can be reduced through the modulation of the PI3K/AKT signaling pathway, resulting in the amelioration of pancreatic disease.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Pancreatitis , Transducción de Señal , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , Mapas de Interacción de Proteínas
6.
Front Oncol ; 14: 1365969, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800391

RESUMEN

Prostate cancer (PCa) is a prevalent male malignancy that originates in the epithelial cells of the prostate. In terms of incidence and mortality of malignant tumors in men, PCa ranks second and fifth globally and first and third among men in Europe and the United States, respectively. These figures have gradually increased in recent years. The primary modalities used to diagnose PCa include prostate-specific antigen (PSA), multiparametric magnetic resonance imaging (mpMRI), and prostate puncture biopsy. Among these techniques, prostate puncture biopsy is considered the gold standard for the diagnosis of PCa; however, this method carries the potential for missed diagnoses. The preoperative evaluation of the patient in this study suggested advanced PCa. However, the initial prostate puncture biopsy was inconsistent with the preoperative diagnosis, and instead of waiting for a repeat puncture of the prostate primary, we performed a biopsy of the rib metastasis, which was later diagnosed as advanced PCa.

7.
Pediatr Int ; 66(1): e15769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742693

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by degeneration of lower motor neurons, resulting in progressive muscle weakness and atrophy. However, little is known regarding the cardiac function of children with SMA. METHODS: We recruited SMA patients younger than 18 years of age from January 1, 2022, to April 1, 2022, in the First Affiliated Hospital of Sun Yat-sen University. All patients underwent a comprehensive cardiac evaluation before treatment, including history taking, physical examination, blood tests of cardiac biomarkers, assessment of echocardiography and electrocardiogram. Age/gender-matched healthy volunteers were recruited as controls. RESULTS: A total of 36 SMA patients (26 with SMA type 2 and 10 with SMA type 3) and 40 controls were enrolled in the study. No patient was clinically diagnosed with heart failure. Blood tests showed elevated values of creatine kinase isoenzyme M and isoenzyme B (CK-MB) mass and high-sensitivity cardiac troponin T (hs-cTnT) in spinal muscular atrophy (SMA) patients. Regarding echocardiographic parameters, SMA children were detected with lower global left and right ventricular longitudinal strain, abnormal diastolic filling velocities of trans-mitral and trans-tricuspid flow. The results revealed no clinical heart dysfunction in SMA patients, but subclinical ventricular dysfunction was seen in SMA children including the diastolic function and myocardial performance. Some patients presented with elevated heart rate and abnormal echogenicity of aortic valve or wall. Among these SMA patients, seven patients (19.4%) had scoliosis. The Cobb's angles showed a significant negative correlation with LVEDd/BSA, but no correlation with other parameters, suggesting that mild scoliosis did not lead to significant cardiac dysfunction. CONCLUSIONS: Our findings warrant increased attention to the cardiac status and highlight the need to investigate cardiac interventions in SMA children.


Asunto(s)
Ecocardiografía , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Niño , Preescolar , Adolescente , Electrocardiografía , Lactante , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/sangre , Biomarcadores/sangre , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/fisiopatología , Atrofias Musculares Espinales de la Infancia/sangre , Atrofias Musculares Espinales de la Infancia/complicaciones , Pruebas de Función Cardíaca/métodos
8.
PLoS One ; 19(5): e0304551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814895

RESUMEN

Coronary microvascular dysfunction (CMD) is a critical pathogenesis of cardiovascular diseases. Lower endothelial nitric oxide synthase (eNOS) phosphorylation leads to reduced endothelium-derived relaxing factor nitric oxide (NO) generation, causing and accelerating CMD. Endoplasmic reticulum stress (ER stress) has been shown to reduce NO production in umbilical vein endothelial cells. Oxidized low-density lipoprotein (ox-LDL) damages endothelial cell function. However, the relationship between ox-LDL and coronary microcirculation has yet to be assessed. Short-chain fatty acid (SCFA), a fermentation product of the gut microbiome, could improve endothelial-dependent vasodilation in human adipose arterioles, but the effect of SCFA on coronary microcirculation is unclear. In this study, we found ox-LDL stimulated expression of ER chaperone GRP78. Further, we activated downstream PERK/eIF2a, IRE1/JNK, and ATF6 signaling pathways, decreasing eNOS phosphorylation and NO production in human cardiac microvascular endothelial. Furthermore, SCFA-propionate can inhibit ox-LDL-induced eNOS phosphorylation reduction and raise NO production; the mechanism is related to the inhibition of ER stress and downstream signaling pathways PERK/eIF2a, IRE1/JNK, and ATF6. In summary, we demonstrate that ox-LDL induced CMD by activating ER stress, propionate can effectively counteract the adverse effects of ox-LDL and protect coronary microcirculation function via inhibiting ER stress.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Lipoproteínas LDL , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Propionatos , Transducción de Señal , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Propionatos/farmacología , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 6/metabolismo , Microcirculación/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo
9.
Int J Biol Macromol ; 271(Pt 1): 132520, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772463

RESUMEN

Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.

10.
Pediatr Infect Dis J ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717173

RESUMEN

BACKGROUND: Early identification of high-risk groups of children with sepsis is beneficial to reduce sepsis mortality. This article used artificial intelligence (AI) technology to predict the risk of death effectively and quickly in children with sepsis in the pediatric intensive care unit (PICU). STUDY DESIGN: This retrospective observational study was conducted in the PICUs of the First Affiliated Hospital of Sun Yat-sen University from December 2016 to June 2019 and Shenzhen Children's Hospital from January 2019 to July 2020. The children were divided into a death group and a survival group. Different machine language (ML) models were used to predict the risk of death in children with sepsis. RESULTS: A total of 671 children with sepsis were enrolled. The accuracy (ACC) of the artificial neural network model was better than that of support vector machine, logical regression analysis, Bayesian, K nearest neighbor method and decision tree models, with a training set ACC of 0.99 and a test set ACC of 0.96. CONCLUSIONS: The AI model can be used to predict the risk of death due to sepsis in children in the PICU, and the artificial neural network model is better than other AI models in predicting mortality risk.

11.
Opt Express ; 32(7): 12601-12608, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571078

RESUMEN

Silicon avalanche photodiode (APD) single-photon detectors in space are continuously affected by radiation, which gradually degrades their dark count performance. From August 2016 to June 2023, we conducted approximately seven years (2507 days) of in-orbit monitoring of the dark count performance of APD single-photon detectors on the Micius Quantum Science Experimental Satellite. The results showed that due to radiation effects, the dark count growth rate was approximately 6.79 cps/day @ -24 °C and 0.37 cps/day @ -55 °C, with a significant suppression effect on radiation-induced dark counts at lower operating temperature. Based on the proposed radiation damage induced dark count annealing model, simulations were conducted for the in-orbit dark counts of the detector, the simulation results are consistent with in-orbit test data. In May 2022, four of these detectors underwent a cumulative 5.7 hours high-temperature annealing test at 76 °C, dark count rate shows no measurable changes, consistent with annealing model. As of now, these ten APD single-photon detectors on the Micius Quantum Science Experimental Satellite have been in operation for approximately 2507 days and are still functioning properly, providing valuable experience for the future long-term space applications of silicon APD single-photon detectors.

12.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571082

RESUMEN

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

13.
World J Gastrointest Surg ; 16(3): 907-920, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38577086

RESUMEN

BACKGROUND: Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced (ECE) delivery of lumen-apposing metal stent (LAMS) is gradually being recognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography (ERCP) failure. However, most of the studies that have assessed its efficacy and safety were small and heterogeneous. Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence. AIM: To update the efficacy and safety of ECE-LAMS for treatment of biliary obstruction after ERCP failure. METHODS: We searched PubMed, EMBASE, and Scopus databases from the inception of the ECE technique to May 13, 2022. Primary outcome measure was pooled technical success rate, and secondary outcomes were pooled rates of clinical success, reintervention, and adverse events. Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R software (version 4.1.3). RESULTS: Fourteen eligible studies involving 620 participants were ultimately included. The pooled rate of technical success was 96.7%, and clinical success was 91.0%. Adverse events were reported in 17.5% of patients. Overall reintervention rate was 7.3%. Subgroup analyses showed results were generally consistent. CONCLUSION: ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible. The consistency of results across most subgroups suggested that this is a generalizable approach.

14.
Wound Manag Prev ; 70(1)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38608161

RESUMEN

OBJECTIVE: To evaluate the efficacy of recombinant human epidermal growth factor (rhEGF) in healing pressure injuries (PIs). METHODS: A meta-analysis was conducted of randomized controlled trials (RCTs) involving rhEGF in the treatment of PIs that were identified in PubMed, Web of Science, the Cochrane Library, and China National Knowledge Infrastructure (CNKI). The population, intervention, comparison, outcomes, study design (PICOS) strategy was applied to determine analysis eligibility. The Cochrane risk of bias tool was used, and statistical analysis, including sensitivity analysis, was performed of 3 outcomes indicators: the primary outcome was total efficacy of rhEGF in treating PIs, and the secondary outcomes were the proportion of complete healing and the time to complete healing. Total efficacy refers to the proportion of cases that have been cured, obviously effective, or effective. Complete healing refers to cases where the wound has healed, scabbed, and the scab has sloughed off. RESULTS: Sixteen RCTs were included, comprising a total of 1,206 patients. Study and control group size varied by outcomes. The total effective healing rate in rhEGF group was 97.18%, which was significantly higher than 83.38% in control group (OR: 5.69, [95% CI: 3.61, 8.97], z=7.49, P < .001). The proportion of complete healing in the rhEGF group was 73.30%, which was higher than 39.52% in control group (OR: 3.88, [95% CI: 3.01, 5.01], z=10.39, P < .001). Furthermore, the healing time using rhEGF was shorter (SMD: -2.14 days, [95% CI: -2.60, -1.67], z=9.07, P < .001). Sensitivity analyses indicated that the results were robust. CONCLUSIONS: The meta-analysis indicated that rhEGF was effective in healing PIs with few negative effects. Further research beyond Chinese populations involving larger studies and studies that distinguish between results found in using rhEGF alone or in combination are recommended.


Asunto(s)
Úlcera por Presión , Humanos , China , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Úlcera por Presión/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Risk Manag Healthc Policy ; 17: 843-853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617594

RESUMEN

Purpose: The purpose of the study was to determine the status of spiritual needs and influencing factors of postoperative breast cancer (BC) women undergoing chemotherapy. Participants and Methods: This study is a cross-sectional study. A total of 173 participants completed a general information questionnaire and a Chinese version of the Spiritual Needs Scale at the Guangxi Medical University Cancer Hospital. Data were collected by purposive sampling from December 2022 to April 2023. Data were analyzed by descriptive statistics, independent t-test, ANOVA, non-parametric test, and logistic regression analysis. Results: The spiritual needs of postoperative BC women undergoing chemotherapy were at a high level (84.20 ± 12.86). The need for "hope and peace" was considered paramount and the need for a "relationship with transcendence" was considered the least important. Significant differences were found in the following: spiritual needs total score (P=0.040) and "hope and peace" (P=0.021) in education level; "love and connection" in disease stage (P=0.021); "meaning and purpose" in education level (P=0.013), household income (P=0.012), and payment method (P=0.015); "relationship with transcendence" in religion (P<0.001); and "acceptance of dying" in marital status (P=0.023). The level of education was the influencing factor of spiritual needs (OR=1.50, P=0.005), especially for "hope and peace" (OR=1.50, P=0.012). Conclusion: The spiritual need of postoperative BC Chinese women undergoing chemotherapy is at a high level and should receive more attention. In clinical work, nurses should fully assess the spiritual needs of patients and meet their specific needs. Results may help nurses to develop targeted and comprehensive spiritual intervention strategies according to the characteristics of patients.

16.
J Colloid Interface Sci ; 666: 371-379, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603879

RESUMEN

VO2 (B) is recognized as a promising cathode material for aqueous zinc metal batteries (AZMBs) owing to its remarkable specific capacity and its unique, expansive tunnel structure, which facilitates the reversible insertion and extraction of Zn2+. Nonetheless, challenges such as the inherent instability of the VO2 structure, poor ion/electron transport and a limited capacity due to the low redox potential of the V3+/V4+ couple have hindered its wider application. In this study, we present a strategy to replace vanadium ions by doping Al3+ in VO2. This approach activates the multi-electron reaction (V4+/V5+), to increase the specific capacity and improve the structural stability by forming robust V5+O and Al3+O bonds. It also induces a local electric field by altering the local electron arrangement, which significantly accelerates the ion/electron transport process. As a result, Al-doped VO2 exhibits superior specific capacity, improved cycling stability, and accelerated electronic transport kinetics compared to undoped VO2. The beneficial effects of heterogeneous atomic doping observed here may provide valuable insights into the improvement electrode materials in metal-ion battery systems other than those based on Zn.

17.
Small ; : e2401675, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644329

RESUMEN

Anodes with high capacity and long lifespan play an important role in the advanced batteries. However, none of the existing anodes can meet these two requirements simultaneously. Lithium (Li)-graphite composite anode presents great potential in balancing these two requirements. Herein, the working mechanism of Li-graphite composite anode is comprehensively investigated. The capacity decay features of the composite anode are different from those of Li ion intercalation in Li ion batteries and Li metal deposition in Li metal batteries. An intercalation and conversion hybrid storage mechanism are proposed by analyzing the capacity decay ratios in the composite anode with different initial specific capacities. The capacity decay models can be divided into four stages including Capacity Retention Stage, Relatively Independent Operation Stage, Intercalation & Conversion Coupling Stage, Pure Li Intercalation Stage. When the specific capacity is between 340 and 450 mAh g-1, its capacity decay ratio is between that of pure intercalation and conversion model. These results intensify the comprehensive understandings on the working principles in Li-graphite composite anode and present novel insights in the design of high-capacity and long-lifespan anode materials for the next-generation batteries.

18.
Patterns (N Y) ; 5(4): 100951, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645764

RESUMEN

The COVID-19 pandemic highlighted the need for predictive deep-learning models in health care. However, practical prediction task design, fair comparison, and model selection for clinical applications remain a challenge. To address this, we introduce and evaluate two new prediction tasks-outcome-specific length-of-stay and early-mortality prediction for COVID-19 patients in intensive care-which better reflect clinical realities. We developed evaluation metrics, model adaptation designs, and open-source data preprocessing pipelines for these tasks while also evaluating 18 predictive models, including clinical scoring methods and traditional machine-learning, basic deep-learning, and advanced deep-learning models, tailored for electronic health record (EHR) data. Benchmarking results from two real-world COVID-19 EHR datasets are provided, and all results and trained models have been released on an online platform for use by clinicians and researchers. Our efforts contribute to the advancement of deep-learning and machine-learning research in pandemic predictive modeling.

19.
J Colloid Interface Sci ; 668: 303-318, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678886

RESUMEN

Regulating interfacial active sites to improve peroxymonosulfate (PMS) activation efficiency is a hot topic in the heterogeneous catalysis field. In this study, we develop an inverted loading strategy to engineer asymmetric Mn-OV-Ce sites for PMS activation. Mn3O4@CeO2 prepared by loading CeO2 nanoparticles onto Mn3O4 nanorods exhibits the highest catalytic activity and stability, which is due to the formation of more oxygen vacancies (OV) at the Mn-OV-Ce sites, and the surface CeO2 layer effectively inhibits corrosion by preventing the loss of manganese ion active species into the solution. In situ characterizations and density functional theory (DFT) studies have revealed effective bimetallic redox cycles at asymmetric Mn-OV-Ce active sites, which promote surface charge transfer, enhance the adsorption reaction activity of active species toward pollutants, and favor PMS activation to generate (•OH, SO4•-, O2•- and 1O2) active species. This study provides a brand-new perspective for engineering the interfacial behavior of PMS activation.

20.
Genome Med ; 16(1): 65, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685057

RESUMEN

Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson's disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .


Asunto(s)
Algoritmos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Medicina de Precisión/métodos , Programas Informáticos , Diabetes Mellitus Tipo 1/genética , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA